
Knowledge Gate Website

Syllabus(Semester Exam)
Unit – I Introduction : Operating system and functions, Classification of Operating systems- Batch, Interactive, Time sharing, Real
Time System, Multiprocessor Systems, Multiuser Systems, Multiprocess Systems, Multithreaded Systems, Operating System
Structure- Layered structure, System Components, Operating System services, Reentrant Kernels, Monolithic and Microkernel
Systems.

Unit – II CPU Scheduling: Scheduling Concepts, Performance Criteria, Process States, Process Transition Diagram, Schedulers,
Process Control Block (PCB), Process address space, Process identification information, Threads and their management,
Scheduling Algorithms, Multiprocessor Scheduling. Deadlock: System model, Deadlock characterization, Prevention, Avoidance
and detection, Recovery from deadlock.

Unit – III Concurrent Processes: Process Concept, Principle of Concurrency, Producer / Consumer Problem, Mutual Exclusion,
Critical Section Problem, Dekker’s solution, Peterson’s solution, Semaphores, Test and Set operation; Classical Problem in
Concurrency- Dining Philosopher Problem, Sleeping Barber Problem; Inter Process Communication models and Schemes, Process
generation.

Unit – IV Memory Management: Basic bare machine, Resident monitor, Multiprogramming with fixed partitions,
Multiprogramming with variable partitions, Protection schemes, Paging, Segmentation, Paged segmentation, Virtual memory
concepts, Demand paging, Performance of demand paging, Page replacement algorithms, Thrashing, Cache memory
organization, Locality of reference.

Unit – V I/O Management and Disk Scheduling: I/O devices, and I/O subsystems, I/O buffering, Disk storage and disk scheduling,
RAID. File System: File concept, File organization and access mechanism, File directories, and File sharing, File system
implementation issues, File system protection and security.

https://www.knowledgegate.in/

Knowledge Gate Website

Chapters of This Video

(Chapter-1: Introduction)- Operating system, Goal & functions, System Components, Operating System services,
Classification of Operating systems- Batch, Interactive, Multiprogramming, Multiuser Systems, Time sharing,
Multiprocessor Systems, Real Time System.
(Chapter-2: Operating System Structure)- Layered structure, Monolithic and Microkernel Systems, Interface, System Call.
Chapter-3: Process Basics)- Process Control Block (PCB), Process identification information, Process States, Process
Transition Diagram, Schedulers, CPU Bound and i/o Bound, Context Switch.
(Chapter-4: CPU Scheduling)- Scheduling Performance Criteria, Scheduling Algorithms.
(Chapter-5: Process Synchronization)- Race Condition, Critical Section Problem, Mutual Exclusion,, Dekker’s solution,
Peterson’s solution, Process Concept, Principle of Concurrency,
(Chapter-6: Semaphores)- Classical Problem in Concurrency- Producer/Consumer Problem, Reader-Writer Problem,
Dining Philosopher Problem, Sleeping Barber Problem, Test and Set operation.
(Chapter-7: Deadlock)- System model, Deadlock characterization, Prevention, Avoidance and detection, Recovery from
deadlock.
(Chapter-8)- Fork Command, Multithreaded Systems, Threads and their management
(Chapter-9: Memory Management)- Memory Hierarchy, Locality of reference, Multiprogramming with fixed partitions,
Multiprogramming with variable partitions, Protection schemes, Paging, Segmentation, Paged segmentation.
(Chapter-10: Virtual memory)- Demand paging, Performance of demand paging, Page replacement algorithms,
Thrashing.
Chapter-11: Disk Management)- Disk Basics, Disk storage and disk scheduling, Total Transfer time.
(Chapter-12: File System)- File allocation Methods, Free-space Management, File organization and access mechanism,
File directories, and File sharing, File system implementation issues, File system protection and security.

https://www.knowledgegate.in/

Knowledge Gate Website

What is Operating System

1. Intermediatory – Acts as an intermediary between user & h/w .

https://www.knowledgegate.in/

Knowledge Gate Website

What is Operating System

2. Resource Manager/Allocator – Operating system controls and coordinates the
use of system resources among various application programs in an unbiased
fashion.

https://www.knowledgegate.in/

Knowledge Gate Website

What is Operating System

3. Platform - OS provides platform on which other application programs can be
installed, provides the environment within which programs are executed.

https://www.knowledgegate.in/

Knowledge Gate Website

Example

https://www.knowledgegate.in/

Knowledge Gate Website

Goals and Functions of operating system

• Goals are the ultimate destination, but we follow functions to implement goals.

सबका साथ सबका विकास

https://www.knowledgegate.in/

Knowledge Gate Website

Goals of operating system

1. Primary goals (Convenience / user friendly)

2. Secondary goals (Efficiency (Using resources in efficient manner) /
Reliability / maintainability)

https://www.knowledgegate.in/

Knowledge Gate Website

Functions of operating system

1. Process Management: Involves handling the creation, scheduling, and termination of
processes, which are executing programs.

2. Memory Management: Manages allocation and deallocation of physical and virtual memory
spaces to various programs.

3. I/O Device Management: Handles I/O operations of peripheral devices like disks, keyboards,
etc., including buffering and caching.

4. File Management: Manages files on storage devices, including their information, naming,
permissions, and hierarchy.

5. Network Management: Manages network protocols and functions, enabling the OS to
establish network connections and transfer data.

6. Security & Protection: Ensures system protection against unauthorized access and other
security threats through authentication, authorization, and encryption.

https://www.knowledgegate.in/

Knowledge Gate Website

Major Components of operating system

1. Kernel
• Central Component: Manages the system's resources and communication between hardware and software.

2. Process Management
• Process Scheduler: Determines the execution of processes.
• Process Control Block (PCB): Contains process details such as process ID, priority, status, etc.
• Concurrency Control: Manages simultaneous execution.

3. Memory Management
• Physical Memory Management: Manages RAM allocation.
• Virtual Memory Management: Simulates additional memory using disk space.
• Memory Allocation: Assigns memory to different processes.

4. File System Management
• File Handling: Manages the creation, deletion, and access of files and directories.
• File Control Block: Stores file attributes and control information.
• Disk Scheduling: Organizes the order of reading or writing to disk.

https://www.knowledgegate.in/

Knowledge Gate Website

5. Device Management
• Device Drivers: Interface between the hardware and the operating system.
• I/O Controllers: Manage data transfer to and from peripheral devices.

6. Security and Access Control
• Authentication: Verifies user credentials.
• Authorization: Controls access permissions to files and directories.
• Encryption: Ensures data confidentiality and integrity.

7. User Interface
• Command Line Interface (CLI): Text-based user interaction.
• Graphical User Interface (GUI): Visual, user-friendly interaction with the OS.

8. Networking
• Network Protocols: Rules for communication between devices on a network.
• Network Interface: Manages connection between the computer and the network.

https://www.knowledgegate.in/

Knowledge Gate Website

Batch Operating System

1. Early computers were not interactive device, there user use to prepare a job which consist three parts
1. Program
2. Control information
3. Input data

2. Only one job is given input at a time as there was no memory, computer will take the input then process it and
then generate output.

3. Common input/output device were punch card or tape drives. So these devices were very slow, and processor
remain ideal most of the time.

https://www.knowledgegate.in/

Knowledge Gate Website

Batch Operating System
4. To speed up the processing job with similar types (for e.g. FORTRAN jobs, COBOL jobs etc.)
were batched together and were run through the processor as a group (batch).

5. In some system grouping is done by the operator while in some systems it is performed by the
'Batch Monitor' resided in the low end of main memory)

6. Then jobs (as a deck of punched cards) are bundled into batches with similar requirement.

https://www.knowledgegate.in/

Knowledge Gate Website

Spooling

Simultaneous peripheral operations online

1. In a computer system input-output devices, such as printers are very slow relative to the
performance of the rest of the system.

2. Spooling is a process in which data is temporarily held in memory or other volatile storage to
be used by a device or a program.

https://www.knowledgegate.in/

Knowledge Gate Website

3. The most common implementation of spooling can be found in typical
input/output devices such as the keyboard, mouse and printer. For example, in
printer spooling, the documents/files that are sent to the printer are first stored in
the memory. Once the printer is ready, it fetches the data and prints it.

https://www.knowledgegate.in/

Knowledge Gate Website

4. Ever had your mouse or keyboard freeze briefly? We often click around to test if
it's working. When it unfreezes, all those stored clicks execute rapidly due to the
device's spool.

https://www.knowledgegate.in/

Knowledge Gate Website

Multiprogramming Operating System

• Multiple Jobs: Keeps several jobs in main
memory simultaneously, allowing more
efficient utilization of the CPU.

• Job Execution: The OS picks and begins to
execute one of the jobs in memory.

• Waiting Jobs: Eventually, a job may need
to wait for a task, such as an I/O operation,
to complete.

Processor वकसी के विए wait नही ीं करेगा

https://www.knowledgegate.in/

Knowledge Gate Website

• Non-Multiprogrammed: CPU sits idle
while waiting for a job to complete.

• Multiprogrammed: The OS switches to
and executes another job if the current
job needs to wait, utilizing the CPU
effectively.

• Conclusion
• Efficient Utilization: Ensures that the

CPU is never idle as long as at least one
job needs to execute, leading to better
utilization of resources.

Show must go on

https://www.knowledgegate.in/

Knowledge Gate Website

• Advantages:
• High CPU Utilization: Enhances processing efficiency.
• Less Waiting Time: Minimizes idle time.
• Multi-Task Handling: Manages concurrent tasks effectively.
• Shared CPU Time: Increases system efficiency.

• Disadvantages:
• Complex Scheduling: Difficult to program.
• Complex Memory Management: Intricate handling of memory is required.

https://www.knowledgegate.in/

Knowledge Gate Website

Multitasking Operating system/time sharing/Multiprogramming with Round Robin/ Fair Share

1. Time sharing (or multitasking) is a logical extension of multiprogramming, it allows many users to share the
computer simultaneously. the CPU executes multiple jobs (May belong to different user) by switching among
them, but the switches occur so frequently that, each user is given the impression that the entire computer
system is dedicated to his/her use, even though it is being shared among many users.

2. In the modern operating systems, we are able to play MP3 music, edit documents in Microsoft Word, surf the
Google Chrome all running at the same time. (by context switching, the illusion of parallelism is achieved)

3. For multitasking to take place, firstly there should be multiprogramming i.e. presence of multiple programs
ready for execution. And secondly the concept of time sharing.

https://www.knowledgegate.in/

Knowledge Gate Website

https://www.knowledgegate.in/

Knowledge Gate Website

Multiprocessing Operating System/ tightly coupled system

1. Multiprocessor Operating System refers to the use of two or more central processing units (CPU) within a
single computer system. These multiple CPU’s share system bus, memory and other peripheral devices.

2. Multiple concurrent processes each can run on a separate CPU, here we achieve a true parallel execution of
processes.

3. Becomes most important in computer system, where the complexity of the job is more, and CPU divides and
conquers the jobs. Generally used in the fields like artificial intelligence and expert system, image processing,
weather forecasting etc.

https://www.knowledgegate.in/

Knowledge Gate Website

Point Symmetric Processing Asymmetric Processing

Definition
All processors are treated equally
and can run any task.

Each processor is assigned a
specific task or role.

Task
Allocation

Any processor can perform any
task.

Tasks are divided according to
processor roles.

Complexity
Generally simpler as all processors
are treated the same.

More complex due to the
dedicated role of each processor.

Scalability
Easily scalable by adding more
processors.

May require reconfiguration as
processors are added.

Performance
Load is evenly distributed,
enhancing performance.

Performance may vary based on
the specialization of tasks.

https://www.knowledgegate.in/

Knowledge Gate Website

Point Multi-Programming Multi-Processing

Definition Allows multiple programs to share a single CPU.
Utilizes multiple CPUs to run
multiple processes concurrently.

Concurrency
Simulates concurrent execution by rapidly
switching between tasks.

Achieves true parallel execution of
processes.

Resource Utilization
Maximizes CPU utilization by keeping it busy with
different tasks.

Enhances performance by allowing
tasks to be processed
simultaneously.

Hardware
Requirements

Requires only one CPU and manages multiple
tasks on it.

Requires multiple CPUs, enabling
parallel processing.

Complexity and
Coordination

Less complex, primarily managing task switching
on one CPU.

More complex, requiring
coordination among multiple CPUs.

https://www.knowledgegate.in/

Knowledge Gate Website

Real time Operating system

1. A real time operating system is a special purpose operating system which has well defined fixed time constraints.
Processing must be done within the defined time limit or the system will fail.

2. Valued more for how quickly or how predictably it can respond, without buffer delays than for the amount of
work it can perform in a given period of time.

3. For example, a petroleum refinery, Airlines reservation system, Air traffic control system, Systems that provide up
to the minute information on stock prices, Defense application systems like as RADAR.

https://www.knowledgegate.in/

Knowledge Gate Website

• Hard real-time operating system - This is also a type of OS and it is predicted by
a deadline. The predicted deadlines will react at a time t = 0. Some examples of
this operating system are air bag control in cars.

https://www.knowledgegate.in/

Knowledge Gate Website

• Soft real-time operating system - The soft real-time operating system has certain deadlines,
may be missed and they will take the action at a time t=0+. The critical time of this operating
system is delayed to some extent. The examples of this operating system are the digital
camera, mobile phones and online data etc.

https://www.knowledgegate.in/

Knowledge Gate Website

Point Hard Real-Time Operating System Soft Real-Time Operating System

Deadline Constraints
Must meet strict deadlines
without fail.

Can miss deadlines occasionally
without failure.

Response Time Fixed and guaranteed. Predictable, but not guaranteed.

Applications
Used in life-critical systems like
medical devices, nuclear
reactors.

Used in multimedia, user
interfaces, etc.

Complexity and Cost
Typically more complex and
costlier.

Less complex and usually less
expensive.

Reliability
Must be highly reliable and
fault-tolerant.

High reliability desired, but some
failures are tolerable.

https://www.knowledgegate.in/

Knowledge Gate Website

Distributed OS

1. A distributed operating system is a software over a collection of independent, networked,
communicating, loosely coupled nodes and physically separate computational nodes.

2. The nodes communicate with one another through various networks, such as high-speed buses and
the Internet. They handle jobs which are serviced by multiple CPUs. Each individual node holds a
specific software subset of the global aggregate operating system.

3. There are four major reasons for building distributed systems: resource sharing, computation speedup,
reliability, and communication.

https://www.knowledgegate.in/

Knowledge Gate Website

Structure of Operating System

• A common approach is to partition the task into small components, or modules, rather than
have one monolithic system. Each of these modules should be a well-defined portion of the
system, with carefully defined inputs, outputs, and functions.

• Simple Structure - Many operating systems do not
have well-defined structures. Frequently, such
systems started as small, simple, and limited
systems and then grew beyond their original scope.
MS-DOS is an example of such a system.

• Not divided into modules. Its interface , levels and
functionality are not well separated

https://www.knowledgegate.in/

Knowledge Gate Website

• Layered Approach - With proper hardware support, operating systems can be broken into pieces. The operating
system can then retain much greater control over the computer and over the applications that make use of that
computer.

1. Implementers have more freedom in changing the inner workings
of the system and in creating modular operating systems.

2. Under a top-down approach, the overall functionality and features
are determined and are separated into components.

3. Information hiding is also important, because it leaves
programmers free to implement the low-level routines as they see
fit.

4. A system can be made modular in many ways. One method is the
layered approach, in which the operating system is broken into a
number of layers (levels). The bottom layer (layer 0) is the
hardware; the highest (layer N) is the user interface.

https://www.knowledgegate.in/

Knowledge Gate Website

Micro-Kernel approach

• In the mid-1980s, researchers at Carnegie Mellon University developed an operating system
called Mach that modularized the kernel using the microkernel approach.

• This method structures the operating system by removing all nonessential components from
the kernel and implementing them as system and user-level programs. The result is a smaller
kernel.

https://www.knowledgegate.in/

Knowledge Gate Website

• One benefit of the microkernel approach is that it makes extending the operating system easier. All new
services are added to user space and consequently do not require modification of the kernel.

• When the kernel does have to be modified, the changes tend to be fewer, because the microkernel is a
smaller kernel.

• The MINIX 3 microkernel, for example, has only approximately 12,000 lines of code. Developer
Andrew S. Tanenbaum

https://www.knowledgegate.in/

Knowledge Gate Website

User and Operating-System Interface

• There are several ways for users to interface with the operating system. Here, we discuss two

fundamental approaches.

• Command-line interface, or command interpreter.

• Graphical User Interfaces.

Operating
System?

https://www.knowledgegate.in/

Knowledge Gate Website

• Command Interpreters - Some operating systems include the command interpreter in the
kernel. Others, such as Windows and UNIX, treat the command interpreter as a special
program that is running when a job is initiated or when a user first logs on (on interactive
systems).

• On systems with multiple command interpreters to choose from, the interpreters are known as
shells. For example, on UNIX and Linux systems, a user may choose among several different
shells, including the Bourne shell, C shell, Bourne-Again shell, Korn shell, and others.

https://www.knowledgegate.in/

Knowledge Gate Website

• Graphical User Interfaces - A second strategy for interfacing with the operating system is
through a user- friendly graphical user interface, or GUI. Here, users employ a mouse-based
window- and-menu system characterized by a desktop.

• The user moves the mouse to position its pointer on images, or icons, on the screen (the
desktop) that represent programs, files, directories, and system functions. Depending on the
mouse pointer’s location, clicking a button on the mouse can invoke a program, select a file or
directory—known as a folder —or pull down a menu that contains commands.

https://www.knowledgegate.in/

Knowledge Gate Website

• Because a mouse is impractical for most mobile systems, smartphones and handheld tablet
computers typically use a touchscreen interface.

• Here, users interact by making gestures on the touchscreen—for example, pressing and
swiping fingers across the screen.

https://www.knowledgegate.in/

Knowledge Gate Website

• The choice of whether to use a command-line or GUI interface is mostly one of personal preference.

• System administrators who manage computers and power users who have deep knowledge of a system
frequently use the command-line interface. For them, it is more efficient, giving them faster access to
the activities they need to perform.

• Indeed, on some systems, only a subset of system functions is available via the GUI, leaving the less
common tasks to those who are command-line knowledgeable.

https://www.knowledgegate.in/

Knowledge Gate Website

System call
• System calls provide the means for a user program to ask

the operating system to perform tasks reserved for the
operating system on the user program’s behalf.

• System calls provide an interface to the services made
available by an operating system. These calls are generally
available as routines written in C and C++.

• The API specifies a set of functions that are available to an
application programmer, including the parameters that are
passed to each function and the return values the
programmer can expect.

https://www.knowledgegate.in/

Knowledge Gate Website

https://www.knowledgegate.in/

Knowledge Gate Website

• Types of System Calls - System calls can be grouped roughly into six major categories: process
control, file manipulation, device manipulation, information maintenance, communications,
and protection.

• Process control

1. end, abort

2. load, execute

3. create process, terminate process

4. get process attributes, set process attributes

5. wait for time

6. wait event, signal event

7. allocate and free memory

https://www.knowledgegate.in/

Knowledge Gate Website

•File management

1. create file, delete file

2. open, close

3. read, write, reposition

4. get file attributes, set file attributes

https://www.knowledgegate.in/

Knowledge Gate Website

•Device management

1. request device, release device

2. read, write, reposition

3. get device attributes, set device attributes

4. logically attach or detach devices

https://www.knowledgegate.in/

Knowledge Gate Website

• Information maintenance

1. get time or date, set time or date

2. get system data, set system data

3. get process, file, or device attributes

4. set process, file, or device attributes

https://www.knowledgegate.in/

Knowledge Gate Website

•Communications

1. create, delete communication connection

2. send, receive messages transfer status information

https://www.knowledgegate.in/

Knowledge Gate Website

Mode
• We need two separate modes of operation: User mode and Kernel mode (also called supervisor mode, system

mode, or privileged mode). A bit, called the mode bit, is added to the hardware of the computer to indicate the
current mode: kernel (0) or user (1).

• When the computer system is executing on behalf of a user application, the system is in user mode. However,
when a user application requests a service from the operating system (via a system call), the system must
transition from user to kernel mode to fulfill the request.

https://www.knowledgegate.in/

Knowledge Gate Website

Kernel Mode

User Mode

https://www.knowledgegate.in/

Knowledge Gate Website

https://www.knowledgegate.in/

Knowledge Gate Website

Process
In general, a process is a program in execution.

A Program is not a Process by default. A program is a passive entity, i.e. a
file containing a list of instructions stored on disk (secondary memory)
(often called an executable file).

A program becomes a Process when an executable file is loaded into main
memory and when it’s PCB is created.

A process on the other hand is an Active Entity, which require resources
like main memory, CPU time, registers, system buses etc.

https://www.knowledgegate.in/

Knowledge Gate Website

Even if two processes may be associated with same program, they will be considered as two
separate execution sequences and are totally different process.

For instance, if a user has invoked many copies of web browser program, each copy will be
treated as separate process. even though the text section is same but the data, heap and stack
sections can vary.

https://www.knowledgegate.in/

Knowledge Gate Website

• A Process consists of following sections:
• Text section: Also known as Program Code.

• Stack: Which contains the temporary data (Function
Parameters, return addresses and local variables).

• Data Section: Containing global variables.

• Heap: Which is memory dynamically allocated during
process runtime.

https://www.knowledgegate.in/

Knowledge Gate Website

Point Program Process

Definition
A set of instructions written to perform a
specific task.

An instance of a program being executed.

State
Static; exists as code on disk or in
storage.

Dynamic; exists in memory and has a state
(e.g., running, waiting).

Resources
Does not require system resources when
not running.

Requires CPU time, memory, and other
resources during execution.

Independence
Exists independently and is not
executing.

Can operate concurrently with other
processes.

Interaction
Does not interact with other programs or
the system.

Can interact with other processes and the
operating system through system calls and
inter-process communication.

https://www.knowledgegate.in/

Knowledge Gate Website

Process Control Block (PCB)

• Each process is represented in the operating system by a process control block
(PCB) — also called a task control block.

• PCB simply serves as the repository for any information that may vary from
process to process. It contains many pieces of information associated with a
specific process, including these:

1. Process state: The state may be new, ready, running, waiting, halted, and
so on.

2. Program counter: The counter indicates the address of the next instruction
to be executed for this process.

3. CPU registers: The registers vary in number and type, depending on the
computer architecture. They include accumulators, index registers, stack
pointers, and general-purpose registers, plus any condition-code information.
Along with the program counter, this state information must be saved when
an interrupt occurs, to allow the process to be continued correctly afterward.

https://www.knowledgegate.in/

Knowledge Gate Website

4. CPU-scheduling information: This information includes a process
priority, pointers to scheduling queues, and any other scheduling
parameters.

5. Memory-management information: This information may include
such items as the value of the base and limit registers and the page
tables, or the segment tables, depending on the memory system used
by the operating system.

6. Accounting information: This information includes the amount of
CPU and real time used, time limits, account numbers, job or process
numbers, and so on.

7. I/O status information: This information includes the list of I/O
devices allocated to the process, a list of open files, and so on.

https://www.knowledgegate.in/

Knowledge Gate Website

https://www.knowledgegate.in/

Knowledge Gate Website

Process States

• A Process changes states as it executes. The state of a process is defined in parts by the
current activity of that process. A process may be in one of the following states:
• New: The process is being created.

• Running: Instructions are being executed.

• Waiting (Blocked): The process is waiting
for some event to occur (such as an I/O
completion or reception of a signal).

• Ready: The process is waiting to be assigned
to a processor.

• Terminated: The process has finished execution.

https://www.knowledgegate.in/

Knowledge Gate Website

Schedulers

• Schedulers: A process migrates among the various scheduling queues throughout its lifetime.
The operating system must select, for scheduling purposes, processes from these queues in
some fashion. The selection process is carried out by the appropriate scheduler.

• Types of Schedulers
• Long Term Scheduler (LTS)/Spooler: Long-term schedulers determine which processes

enter the ready queue from the job pool. Operating less frequently than short-term
schedulers, they focus on long-term system goals such as maximizing throughput.

• Medium-term scheduler: The medium-term scheduler swaps processes in and out of
memory to optimize CPU usage and manage memory allocation. By doing so, it adjusts the
degree of multiprogramming and frees up memory as needed. Swapping allows the
system to pause and later resume a process, improving overall system efficiency.

• Short Term Scheduler (STS): The short-term scheduler, or CPU scheduler, selects from
among the processes that are ready to execute and allocates the CPU to one of them.

https://www.knowledgegate.in/

Knowledge Gate Website

Point Long-Term Scheduler Short-Term Scheduler Middle Scheduler

Function
Controls the admission of new
processes into the system.

Selects which ready process
will execute next.

Adjusts the degree of
multiprogramming, moving
processes between ready and
waiting queues.

Frequency
Executes infrequently as it
deals with the admission of
new processes.

Executes frequently to
rapidly switch between
processes.

Executes at an intermediate
frequency, balancing long-term
and short-term needs.

Responsibility
Determines which programs
are admitted to the system
from the job pool.

Manages CPU scheduling and
the switching of processes.

Controls the mix of CPU-bound
and I/O-bound processes to
optimize throughput.

Impact on System
Performance

Influences overall system
performance and degree of
multiprogramming.

Directly impacts CPU
utilization and response
time.

Balances system load to
prevent resource bottlenecks
or idle resources.

Decision Making
Makes decisions based on
long-term goals like system
throughput.

Makes decisions based on
short-term goals like
minimizing response time.

Makes decisions considering
both short-term and long-term
goals, optimizing resource
allocation.

https://www.knowledgegate.in/

Knowledge Gate Website

• Dispatcher - The dispatcher is the module that gives control of the CPU to the process
selected by the short-term scheduler.

• This function involves the following: Switching context, switching to user mode, jumping to
the proper location in the user program to restart that program.

• The dispatcher should be as fast as possible, since it is invoked during every process switch.
The time it takes for the dispatcher to stop one process and start another running is known as
the dispatch latency.

https://www.knowledgegate.in/

Knowledge Gate Website

CPU Bound and I/O Bound Processes

• A process execution consists of a cycle of CPU execution or wait and i/o execution or wait. Normally a process
alternates between two states.

• Process execution begin with the CPU burst that may be followed by a i/o burst, then another CPU and i/o burst
and so on. Eventually in the last will end up on CPU burst. So, process keep switching between the CPU and i/o
during execution.

• I/O Bound Processes: An I/O-bound process is one that spends more of its time doing I/O than it spends doing
computations.

• CPU Bound Processes: A CPU-bound process, generates I/O requests infrequently, using more of its time doing
computations.

• It is important that the long-term scheduler select a good process mix of I/O-bound and CPU-bound processes. If
all processes are I/O bound, the ready queue will almost always be empty, and the short-term scheduler will
have little to do. Similarly, if all processes are CPU bound, the I/O waiting queue will almost always be empty,
devices will go unused, and again the system will be unbalanced.

https://www.knowledgegate.in/

Knowledge Gate Website

Context Switch

• Switching the CPU to another process requires
performing a state save of the current process
and a state restore of a different process. This
task is known as a context switch.

• When a context switch occurs, the kernel
saves the context of the old process in its PCB
and loads the saved context of the new
process scheduled to run. Context-switch time
is pure overhead, because the system does no
useful work while switching.

https://www.knowledgegate.in/

Knowledge Gate Website

https://www.knowledgegate.in/

Knowledge Gate Website

Sector-78
Rohtak
Sadar bazar
Grand father paper industry machenical
May-2023,
Cacha 1 km away
Elder brother marrage in

https://www.knowledgegate.in/

Knowledge Gate Website

https://www.knowledgegate.in/

Knowledge Gate Website

CPU Scheduling

1. CPU scheduling is the process of determining which process in the ready queue
is allocated to the CPU.

2. Various scheduling algorithms can be used to make this decision, such as First-
Come-First-Served (FCFS), Shortest Job Next (SJN), Priority and Round Robin
(RR).

3. Different algorithm support different class of process and favor different
scheduling criterion.

https://www.knowledgegate.in/

Knowledge Gate Website

Type of scheduling

• Non-Pre-emptive: Under Non-Pre-emptive scheduling, once the CPU has been
allocated to a process, the process keeps the CPU until it releases the CPU
willingly.

• A process will leave the CPU only
1. When a process completes its execution (Termination state)
2. When a process wants to perform some i/o operations(Blocked state)

https://www.knowledgegate.in/

Knowledge Gate Website

Pre-emptive
• Under Pre-emptive scheduling, once the CPU has been allocated to a process, A process will

leave the CPU willingly or it can be forced out. So it will leave the CPU
1. When a process completes its execution
2. When a process leaves CPU voluntarily to perform some i/o operations
3. If a new process enters in the ready states (new, waiting), in case of high priority
4. When process switches from running to ready state because of time quantum expire.

https://www.knowledgegate.in/

Knowledge Gate Website

Point Non-Pre-emptive Scheduling Pre-emptive Scheduling

CPU Allocation
Once a process starts, it runs to
completion or wait for some event.

A process can be interrupted and
moved to the ready queue.

Response Time
Can be longer, especially for short
tasks.

Generally shorter, as higher-priority
tasks can pre-empt others.

Complexity Simpler to implement.
More complex, requiring careful
handling of shared resources.

Resource
Utilization

May lead to inefficient CPU
utilization.

Typically more efficient, as it can quickly
switch tasks.

Suitable
Applications

Batch systems and applications that
require predictable timing.

Interactive and real-time systems
requiring responsive behavior.

https://www.knowledgegate.in/

Knowledge Gate Website

• Scheduling criteria - Different CPU-scheduling algorithms have different
properties, and the choice of a particular algorithm may favour one class of
processes over another. So, in order to efficiently select the scheduling
algorithms following criteria should be taken into consideration:

https://www.knowledgegate.in/

Knowledge Gate Website

• CPU utilization: Keeping the CPU as busy as possible.

https://www.knowledgegate.in/

Knowledge Gate Website

• Throughput: If the CPU is busy executing processes, then work is being done.
One measure of work is the number of processes that are completed per time
unit, called throughput.

https://www.knowledgegate.in/

Knowledge Gate Website

• Waiting time: Waiting time is the sum of the periods spent waiting in
the ready queue.

https://www.knowledgegate.in/

Knowledge Gate Website

• Response Time: Is the time it takes to start responding, not the
time it takes to output the response.

https://www.knowledgegate.in/

Knowledge Gate Website

• Note: The CPU-scheduling algorithm does not affect the amount of time during
which a process executes or perform I/0; it affects only the amount of time that a
process spends waiting in the ready queue.

• It is desirable to maximize CPU utilization and throughput and to minimize
turnaround time, waiting time, and response time.

https://www.knowledgegate.in/

Knowledge Gate Website

Terminology

• Arrival Time (AT): Time at which process enters a ready state.

• Burst Time (BT): Amount of CPU time required by the process to finish its execution.

• Completion Time (CT): Time at which process finishes its execution.

• Turn Around Time (TAT): Completion Time (CT) – Arrival Time (AT), Waiting Time + Burst Time (BT)

• Waiting Time: Turn Around Time (TAT) – Burst Time (BT)

https://www.knowledgegate.in/

Knowledge Gate Website

FCFS (FIRST COME FIRST SERVE)

• FCFS is the simplest scheduling algorithm, as the name suggest, the process that requests the
CPU first is allocated the CPU first.

• Implementation is managed by FIFO Queue.

• It is always non pre-emptive in nature.

https://www.knowledgegate.in/

Knowledge Gate Website

P. No Arrival Time

(AT)

Burst Time

(BT)

Completion Time

(CT)

Turn Around Time

(TAT) = CT - AT

Waiting Time

(WT) = TAT - BT

P0 2 4

P1 1 2

P2 0 3

P3 4 2

P4 3 1
Average

https://www.knowledgegate.in/

Knowledge Gate Website

Advantage

• Easy to understand, and can easily be implemented using Queue data structure.

• Can be used for Background processes where execution is not urgent.

https://www.knowledgegate.in/

Knowledge Gate Website

P. No AT BT TAT=CT-AT WT=TAT -BT

P0 0 100

P1 1 2

Average

P. No AT BT TAT=CT-AT WT=TAT -BT

P0 1 100

P1 0 2

Average

https://www.knowledgegate.in/

Knowledge Gate Website

Convoy Effect
• If the smaller process have to wait more for the CPU because of Larger process then this effect

is called Convoy Effect, it result into more average waiting time.

• Solution, smaller process have to be executed before longer process, to achieve less average
waiting time.

https://www.knowledgegate.in/

Knowledge Gate Website

Disadvantage
• FCFS suffers from convoy which means smaller process have to wait larger process,

which result into large average waiting time.

• The FCFS algorithm is thus particularly troublesome for time-sharing systems (due to its
non-pre-emptive nature), where it is important that each user get a share of the CPU at
regular intervals.

• Higher average waiting time and TAT compared to other algorithms.

https://www.knowledgegate.in/

Knowledge Gate Website

Shortest Job First (SJF)(non-pre-emptive)
Shortest Remaining Time First (SRTF)/ (Shortest Next CPU Burst) (Pre-emptive)

• Whenever we make a decision of selecting the next process for CPU execution,
out of all available process, CPU is assigned to the process having smallest burst
time requirement. When the CPU is available, it is assigned to the process that
has the smallest next CPU burst. If there is a tie, FCFS is used to break tie.

https://www.knowledgegate.in/

Knowledge Gate Website

• It supports both version non-pre-emptive and pre-emptive (purely greedy
approach)

• In Shortest Job First (SJF)(non-pre-emptive) once a decision is made and among
the available process, the process with the smallest CPU burst is scheduled on
the CPU, it cannot be pre-empted even if a new process with the smaller CPU
burst requirement then the remaining CPU burst of the running process enter in
the system.

https://www.knowledgegate.in/

Knowledge Gate Website

• In Shortest Remaining Time First (SRTF) (Pre-emptive) whenever a process enters
in ready state, again we make a scheduling decision weather, this new process
with the smaller CPU burst requirement then the remaining CPU burst of the
running process and if it is the case then the running process is pre-empted and
new process is scheduled on the CPU.

• This version (SRTF) is also called optimal is it guarantee minimal average waiting
time.

https://www.knowledgegate.in/

Knowledge Gate Website

P. No Arrival Time

(AT)

Burst Time

(BT)

Completion Time

(CT)

Turn Around Time

(TAT) = CT - AT

Waiting Time

(WT) = TAT - BT

P0
1 7

P1
2 5

P2
3 1

P3
4 2

P4
5 8

Average

https://www.knowledgegate.in/

Knowledge Gate Website

• Advantage

• Pre-emptive version guarantees minimal average waiting time so some time also referred
as optimal algorithm. Provide a standard for other algo in terms of average waiting time.

• Provide better average response time compare to FCFS.

• Disadvantage

• Here process with the longer CPU burst requirement goes into starvation and have
response time.

• This algo cannot be implemented as there is no way to know the length of the next CPU
burst. As SJF is not implementable, we can use the one technique where we try to predict
the CPU burst of the next coming process.

https://www.knowledgegate.in/

Knowledge Gate Website

Priority scheduling

https://www.knowledgegate.in/

Knowledge Gate Website

Priority scheduling
• Here a priority is associated with each process. At any instance of time out of all available process,

CPU is allocated to the process which possess highest priority (may be higher or lower number).

• Tie is broken using FCFS order. No importance to senior or burst time. It supports both non-pre-
emptive and pre-emptive versions.
• In Priority (non-pre-emptive) once a decision is made and among the available process, the

process with the highest priority is scheduled on the CPU, it cannot be pre-empted even if a
new process with higher priority more than the priority of the running process enter in the
system.

• In Priority (pre-emptive) once a decision is made and among the available process, the process
with the highest priority is scheduled on the CPU. if it a new process with priority more than
the priority of the running process enter in the system, then we do a context switch and the
processor is provided to the new process with higher priority.

• There is no general agreement on whether 0 is the highest or lowest priority, it can vary from
systems to systems.

https://www.knowledgegate.in/

Knowledge Gate Website

P. No AT BT Priority CT TAT = CT - AT WT = TAT - BT

P0
1 4 4

P1
2 2 5

P2
2 3 7

P3
3 5 8(H)

P4
3 1 5

P5
4 2 6

Average

https://www.knowledgegate.in/

Knowledge Gate Website

• Advantage
• Gives a facility specially to system process.
• Allow us to run important process even if it is a user process.

• Disadvantage
• Here process with the smaller priority may starve for the CPU
• No idea of response time or waiting time.

• Note: - Specially use to support system process or important user process
• Ageing: - a technique of gradually increasing the priority of processes that wait in

the system for long time. E.g. priority will increase after every 10 mins

https://www.knowledgegate.in/

Knowledge Gate Website

Round robin

• This algo is designed for time sharing systems, where it is not, the idea to complete one process and then start
another, but to be responsive and divide time of CPU among the process in the ready state(circular).

• The CPU scheduler goes around the ready queue, allocating the CPU to each process for a maximum of 1 Time
quantum say q. Up to which a process can hold the CPU in one go, with in which either a process terminates if
process have a CPU burst of less than given time quantum or context switch will be executed and process must
release the CPU voluntarily and enter the ready queue and wait for the next chance.

• If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the CPU
time in chunks of at most q time units. Each process must wait no longer than (n - 1) x q time units until its next
time quantum.

https://www.knowledgegate.in/

Knowledge Gate Website

P. No Arrival Time

(AT)

Burst Time

(BT)

Completion Time

(CT)

Turn Around Time

(TAT) = CT - AT

Waiting Time (WT)

= TAT - BT

P0 0 4

P1 1 5

P2 2 2

P3 3 1

P4 4 6

P5 6 3

Average

https://www.knowledgegate.in/

Knowledge Gate Website

• Advantage
• Perform best in terms of average response time

• Works will in case of time-sharing systems, client server architecture and interactive
system

• kind of SJF implementation

• Disadvantage
• Longer process may starve

• Performance depends heavily on time quantum - If value of the time quantum is very less,
then it will give lesser average response time (good but total no of context switches will be
more, so CPU utilization will be less), If time quantum is very large then average response
time will be more bad, but no of context switches will be less, so CPU utilization will be
good.

• No idea of priority

https://www.knowledgegate.in/

Knowledge Gate Website

Multi Level-Queue Scheduling

• After studying all important approach to CPU scheduling, we must understand anyone of them
alone is not good for every process in the system, as different process have different
scheduling needs so, we must have a kind of hybrid scheduling idea, supporting all classes of
processes.

• Here processes are easily classified into different groups.
• System process
• foreground (interactive) processes
• background (batch) processes.

• A multilevel queue scheduling algorithm, partitions the ready queue into several separate
queues. The processes are permanently assigned to one queue, generally based on properties
and requirement of the process.

https://www.knowledgegate.in/

Knowledge Gate Website

• Each queue has its own scheduling algorithm. For example
• System process might need priority algorithm
• Interactive process might be scheduled by an RR algorithm
• Batch processes is scheduled by an FCFS algorithm.

• In addition, there must be scheduling among the queues, which is commonly implemented as
fixed-priority preemptive scheduling or round robin with different time quantum.

https://www.knowledgegate.in/

Knowledge Gate Website

Multi-level Feedback Queue Scheduling

• Problem with multi-level queue scheduling is how to decide number of
ready queue, scheduling algorithm inside the queue and between the
queue and once a process enters a specific queue we can not change and
queue after that.

• The multilevel feedback queue scheduling algorithm, allows a process to
move between queues. The idea is to separate processes according to the
characteristics of their CPU bursts. If a process uses too much CPU time, it
will be moved to a lower-priority queue. In addition, a process that waits
too long in a lower-priority queue may be moved to a higher-priority
queue. This form of aging prevents starvation.

• A process entering the ready queue is put in queue 0. A process in queue 0
is given a time quantum of 8 milliseconds. If it does not finish within this
time, it is moved to the tail of queue 1. If queue 0 is empty, the process at
the head of queue 1 is given a quantum of 16 milliseconds. If it does not
complete, it is preempted and is put into queue 2. Processes in queue 2
are run on an FCFS basis but are run only when queues 0 and 1 are empty.

https://www.knowledgegate.in/

Knowledge Gate Website

In general, a multilevel feedback queue scheduler is defined by the following
parameters:
• The number of queues
• The scheduling algorithm for each queue
• The method used to determine when to upgrade a process to a higher-

priority queue
• The method used to determine when to demote a process to a lower-

priority queue.
• The definition of a multilevel feedback queue scheduler makes it the most

general CPU-scheduling algorithm. It can be configured to match a specific
system under design. Unfortunately, it is also the most complex algorithm,
since defining the best scheduler requires some means by which to select
values for all the parameters.

https://www.knowledgegate.in/

Knowledge Gate Website

https://www.knowledgegate.in/

Knowledge Gate Website

Process Synchronization & Race Condition

• As we understand in a multiprogramming environment a good number of processes compete
for limited number of resources. Concurrent access to shared data at some time may result in
data inconsistency for e.g.

P ()
{

read (i);
i = i + 1;
write(i);

}

• Race condition is a situation in which the output of a process depends on the execution
sequence of process. i.e. if we change the order of execution of different process with
respect to other process the output may change.

https://www.knowledgegate.in/

Knowledge Gate Website

General Structure of a process

• Initial Section: Where process is accessing private
resources.

• Entry Section: Entry Section is that part of code where,
each process request for permission to enter its critical
section.

• Critical Section: Where process is access shared
resources.

• Exit Section: It is the section where a process will exit
from its critical section.

• Remainder Section: Remaining Code.

P()

{

While(T)

{

Initial Section

Entry Section

Critical Section

Exit Section

Remainder Section

}

}

https://www.knowledgegate.in/

Knowledge Gate Website

Criterion to Solve Critical Section Problem

• Mutual Exclusion: No two processes should be present inside the critical section at the
same time, i.e. only one process is allowed in the critical section at an instant of time.

• Progress: If no process is executing in its critical section and some processes wish to
enter their critical sections, then only those processes that are not executing in their
remainder sections can participate in deciding which will enter its critical section
next(means other process will participate which actually wish to enter). there should
be no deadlock.

• Bounded Waiting: There exists a bound or a limit on the number of times a process is
allowed to enter its critical section and no process should wait indefinitely to enter the
CS.

https://www.knowledgegate.in/

Knowledge Gate Website

Some Points to Remember
• Mutual Exclusion and Progress are mandatory requirements that needs to be

followed in order to write a valid solution for critical section problem.

• Bounded waiting is optional criteria, if not satisfied then it may lead to
starvation.

https://www.knowledgegate.in/

Knowledge Gate Website

Solutions to Critical Section Problem

We generally have the following solutions to a Critical Section Problems:
1. Two Process Solution

1. Using Boolean variable turn
2. Using Boolean array flag
3. Peterson’s Solution

2. Operating System Solution
1. Counting Semaphore
2. Binary Semaphore

3. Hardware Solution
1. Test and Set Lock
2. Disable interrupt

https://www.knowledgegate.in/

Knowledge Gate Website

Two Process Solution

• In general it will be difficult to write a valid solution in the first go to solve critical
section problem among multiple processes, so it will be better to first attempt
two process solution and then generalize it to N-Process solution.

• There are 3 Different idea to achieve valid solution, in which some are invalid
while some are valid.

• 1- Using Boolean variable turn

• 2- Using Boolean array flag

• 3- Peterson’s Solution

https://www.knowledgegate.in/

Knowledge Gate Website

• Here we will use a Boolean variable turn, which is initialize randomly(0/1).

P0 P1

while (1)

{

while (turn! = 0);

Critical Section

turn = 1;

Remainder section

}

while (1)

{

while (turn! = 1);

Critical Section

turn = 0;

Remainder Section

}

https://www.knowledgegate.in/

Knowledge Gate Website

• The solution follows Mutual Exclusion as the two processes cannot
enter the CS at the same time.

• The solution does not follow the Progress, as it is suffering from the
strict alternation. Because we never asked the process whether it
wants to enter the CS or not?

https://www.knowledgegate.in/

Knowledge Gate Website

• Here we will use a Boolean array flag with two cells, where each cell is initialized to F

P0 P1

while (1)

{

flag [0] = T;

while (flag [1]);

Critical Section

flag [0] = F;

Remainder section

}

while (1)

{

flag [1] = T;

while (flag [0]);

Critical Section

flag [1] = F;

Remainder Section

}

https://www.knowledgegate.in/

Knowledge Gate Website

• This solution follows the Mutual Exclusion Criteria.

• But in order to achieve the progress the system ended up
being in a deadlock state.

https://www.knowledgegate.in/

Knowledge Gate Website

Pi Pj

do
{
 flag[i] = true;
 while (flag[j])
 {
 if (turn == j)
 {
 flag[i] = false;
 while (turn == j) ;
 flag[i] = true;
 }
 }
 /* critical section */
 turn = j;
 flag[i] = false;
 /* remainder section */
}
while (true);

do
{
 flag[j] = true;
 while (flag[i])
 {
 if (turn == i)
 {
 flag[j] = false;
 while (turn == i) ;
 flag[j] = true;
 }
 }
 /* critical section */
 turn = i;
 flag[j] = false;
 /* remainder section */
}
while (true);

Dekker's algorithm

https://www.knowledgegate.in/

Knowledge Gate Website

• Peterson's solution is a classic Software-based solution to the critical-section problem for two
process. We will be using both: turn and Boolean flag.

P0 P1

while (1)

{

flag [0] = T;

turn = 1;

while (turn = = 1 && flag [1] = = T);

Critical Section

flag [0] = F;

Remainder section

}

while (1)

{

flag [1] = T;

turn = 0;

while (turn = = 0 && flag [0] = =T);

Critical Section

flag [1] = F;

Remainder Section

}

• This solution ensures Mutual Exclusion, Progress and Bounded Wait.

https://www.knowledgegate.in/

Knowledge Gate Website

Operation System Solution (Semaphores)

1. Semaphores are synchronization tools using which we will attempt n-process solution.

2. A semaphore S is a simple integer variable that, but apart from initialization it can be

accessed only through two standard atomic operations: wait(S) and signal(S).

3. The wait(S) operation was originally termed as P(S) and signal(S) was originally called V(S).

Wait(S)

{

while(s<=0);

s--;

}

Signal(S)

{

s++;

}

https://www.knowledgegate.in/

Knowledge Gate Website

• Peterson’s Solution was confined to just two
processes, and since in a general system can have n
processes, Semaphores provides n-processes solution.

• While solving Critical Section Problem only we
initialize semaphore S = 1.

• Semaphores are going to ensure Mutual Exclusion and
Progress but does not ensures bounded waiting.

Pi()
{

While(T)

{

Initial Section

wait(s)

Critical Section

signal(s)

Remainder Section

}

}

Wait(S)

{

while(s<=0);

s--;

}

Signal(S)

{

s++;

}

https://www.knowledgegate.in/

Knowledge Gate Website

Classical Problems on Synchronization

• There are number of actual industrial problem we try to solve in order to
improve our understand of Semaphores and their power of solving problems.

• Here in this section we will discuss a number of problems like
• Producer consumer problem/ Bounder Buffer Problem

• Reader-Writer problem

• Dining Philosopher problem

• The Sleeping Barber problem

https://www.knowledgegate.in/

Knowledge Gate Website

Producer-Consumer Problem

• Problem Definition – There are two process Producer and Consumers, producer produces
information and put it into a buffer which have n cell, that is consumed by a consumer. Both
Producer and Consumer can produce and consume only one article at a time.

• A producer needs to check whether the buffer is overflowed or not after producing an item,
before accessing the buffer.

• Similarly, a consumer needs to check for an underflow before accessing the buffer and then
consume an item.

• Also, the producer and consumer must be synchronized, so that once a producer and consumer
it accessing the buffer the other must wait.

https://www.knowledgegate.in/

Knowledge Gate Website

Solution Using Semaphores

• Now to solve the problem we will be using three semaphores:
• Semaphore S = 1 // CS
• Semaphore E = n // Count Empty cells
• Semaphore F = 0 // Count Filled cells

https://www.knowledgegate.in/

Knowledge Gate Website

Producer() Consumer()

Semaphore S =

Semaphore E =

Semaphore F =

https://www.knowledgegate.in/

Knowledge Gate Website

Producer() Consumer()

Producer() Consumer()

{ {

while(T) while(T)

{ {

} }

Semaphore S =

Semaphore E =

Semaphore F =

https://www.knowledgegate.in/

Knowledge Gate Website

Producer() Consumer()

Producer() Consumer()

{ {

while(T) while(T)

{ {

// Produce an item

// Pick item from buffer

// Add item to buffer

// Consume item

} }

Semaphore S =

Semaphore E =

Semaphore F =

https://www.knowledgegate.in/

Knowledge Gate Website

Producer() Consumer()

Producer() Consumer()

{ {

while(T) while(T)

{ {

// Produce an item

wait(S)

wait(S) // Pick item from buffer

// Add item to buffer signal(S)

signal(S)

// Consume item

} }

Semaphore S =

Semaphore E =

Semaphore F =

https://www.knowledgegate.in/

Knowledge Gate Website

Producer() Consumer()

{ {

while(T) while(T)

{ {

// Produce an item wait(F)//UnderFlow

wait(E)//OverFlow wait(S)

wait(S) // Pick item from buffer

// Add item to buffer signal(S)

signal(S) wait(E)

wait(F) Consume item

} }

} }

Total three resources
are used
• semaphore E take

count of empty cells
and over flow

• semaphore F take
count of filled cells
and under flow

• Semaphore S take
care of buffer

https://www.knowledgegate.in/

Knowledge Gate Website

Reader-Writer Problem

• Suppose that a database is to be shared among several
concurrent processes. Some of these processes may
want only to read the database (readers), whereas
others may want to update (that is, to read and write)
the database(writers).

• If two readers access the shared data simultaneously,
no adverse effects will result. But, if a writer and some
other process (either a reader or a writer) access the
database simultaneously, chaos may ensue.

• To ensure that these difficulties do not arise, we
require that the writers have exclusive access to the
shared database while writing to the database.

https://www.knowledgegate.in/

Knowledge Gate Website

• Points that needs to be taken care for generating a Solutions:
• The solution may allow more than one reader at a time, but should not allow

any writer.
• The solution should strictly not allow any reader or writer, while a writer is

performing a write operation.

https://www.knowledgegate.in/

Knowledge Gate Website

• Solution using Semaphores
• The reader processes share the following data structures:
• semaphore mutex = 1, wrt =1; // Two semaphores
• int readcount = 0; // Variable

Three resources are used
• Semaphore Wrt is used for synchronization between WW, WR, RW
• Semaphore reader is used to synchronize between RR
• Readcount is simple int variable which keep counts of number of readers

https://www.knowledgegate.in/

Knowledge Gate Website

Writer() Reader()

CS //Write CS //Read

Mutex =

Wrt =

Readcount =

https://www.knowledgegate.in/

Knowledge Gate Website

Writer() Reader()

Wait(wrt)

CS //Write CS //Read

Signal(wrt)

Mutex =

Wrt =

Readcount =

https://www.knowledgegate.in/

Knowledge Gate Website

Writer() Reader()

Readcount++

Wait(wrt)

CS //Write CS //Read

Signal(wrt)

Readcount--

Mutex =

Wrt =

Readcount =

https://www.knowledgegate.in/

Knowledge Gate Website

Writer() Reader()

Wait(mutex)

Readcount++

Wait(wrt) signal(mutex)

CS //Write CS //Read

Signal(wrt) Wait(mutex)

Readcount--

signal(mutex)

Mutex =

Wrt =

Readcount =

https://www.knowledgegate.in/

Knowledge Gate Website

Writer() Reader()

Wait(mutex)

Readcount++

If(readcount ==1)

wait(wrt) // first

Wait(wrt) signal(mutex)

CS //Write CS //Read

Signal(wrt) Wait(mutex)

Readcount--

If(readcount ==0)

signal(wrt) // last

signal(mutex)

Mutex =

Wrt =

Readcount =

https://www.knowledgegate.in/

Knowledge Gate Website

Dining Philosopher Problem

• Consider five philosophers who spend their lives
thinking and eating. The philosophers share a
circular table surrounded by five chairs, each
belonging to one philosopher.

• In the center of the table is a bowl of rice, and
the table is laid with five single chopsticks.

• When a philosopher thinks, she does not interact
with her colleagues.

https://www.knowledgegate.in/

Knowledge Gate Website

• From time to time, a philosopher gets hungry and tries to
pick up the two chopsticks that are closest to her (the
chopsticks that are between her and her left and right
neighbors).

• A philosopher may pick up only one chopstick at a time.
Obviously, she can’t pick up a chopstick that is already in
the hand of a neighbor. When a hungry philosopher has
both her chopsticks at the same time, she eats without
releasing her chopsticks. When she is finished eating, she
puts down both of her chopsticks and starts thinking
again.

https://www.knowledgegate.in/

Knowledge Gate Website

https://www.knowledgegate.in/

Knowledge Gate Website

Indian Chopsticks

https://www.knowledgegate.in/

Knowledge Gate Website

Solution for Dining Philosophers

Void Philosopher (void)
{

while (T)
{

Thinking () ;
wait(chopstick [i]);
wait(chopstick([(i+1)%5]);
Eat();
signal(chopstick [i]);
signal(chopstick([(i+1)%5]);

}
}

https://www.knowledgegate.in/

Knowledge Gate Website

• Here we have used an array of semaphores called chopstick[]

• Solution is not valid because there is a possibility of deadlock.

https://www.knowledgegate.in/

Knowledge Gate Website

• The proposed solution for deadlock problem is
• Allow at most four philosophers to be sitting

simultaneously at the table.

• Allow six chopstick to be used simultaneously at the
table.

• Allow a philosopher to pick up her chopsticks only if both
chopsticks are available (to do this, she must pick them
up in a critical section).

• One philosopher picks up her right chopstick first and then
left chop stick, i.e. reverse the sequence of any philosopher.

• Odd philosopher picks up first her left chopstick and then her
right chopstick, whereas an even philosopher picks up her
right chopstick and then her left chopstick.

https://www.knowledgegate.in/

Knowledge Gate Website

The Sleeping Barber problem

• Barbershop: A barbershop consists of a waiting room
with n chairs and a barber room with one barber chair.

• Customers: Customers arrive at random intervals. If there
is an available chair in the waiting room, they sit and wait.
If all chairs are taken, they leave.

• Barber: The barber sleeps if there are no customers. If a
customer arrives and the barber is asleep, they wake the
barber up.

• Synchronization: The challenge is to coordinate the
interaction between the barber and the customers using
concurrent programming mechanisms.

https://www.knowledgegate.in/

Knowledge Gate Website

Barber Customer

semaphore barber = 0; // Indicates if the barber is available
semaphore customer = 0; // Counts the waiting customers
semaphore mutex = 1; // Mutex for critical section int
waiting = 0; // Number of waiting customers

while(true)

{

wait(customer);

wait(mutex);

waiting = waiting - 1;

signal(barber);

signal(mutex);

// Cut hair

}

wait(mutex);

if(waiting < n)

{

waiting = waiting + 1;

signal(customer);

signal(mutex);

wait(barber);

// Get hair cut

}

else

{

signal(mutex);

}

https://www.knowledgegate.in/

Knowledge Gate Website

Hardware Type Solution Test and Set

• Software-based solutions such as Peterson’s are not guaranteed to work on modern computer
architectures. In the following discussions, we explore several more solutions to the critical-
section problem using techniques ranging from hardware to software, all these solutions are
based on the premise of locking —that is, protecting critical regions through the use of locks.

• The critical-section problem could be solved simply in a single-processor environment if we
could prevent interrupts from occurring while a shared variable was being modified.

https://www.knowledgegate.in/

Knowledge Gate Website

Boolean test and set (Boolean *target)
{

Boolean rv = *target;
*target = true;
return rv;

}

While(1)
{
 while (test and set(&lock));

/* critical section */
lock = false;
/* remainder section */

}

https://www.knowledgegate.in/

Knowledge Gate Website

• Many modern computer systems therefore provide special hardware instructions
that allow us either to test and modify the content of a word atomically —that is,
as one uninterruptible unit. We can use these special instructions to solve the
critical-section problem in a relatively simple manner.

• The important characteristic of this instruction is that it is executed atomically.
Thus, if two test and set() instructions are executed simultaneously (each on a
different CPU), they will be executed sequentially in some arbitrary order.

https://www.knowledgegate.in/

Knowledge Gate Website

Basics of Dead-Lock

• In a multiprogramming environment, several processes may compete for a finite number of
resources.

• A process requests resources; if the resources are not available at that time, the process
enters a waiting state. Sometimes, a waiting process is never again able to change state,
because the resources it has requested are held by other waiting processes. This situation is
called a deadlock.

• A set of processes is in a deadlocked state when every process in the set is waiting for an
event that can be caused only by another process in the set.

P1

R1 R2

P2

https://www.knowledgegate.in/

Knowledge Gate Website

https://www.knowledgegate.in/

Knowledge Gate Website

Tax

Services

https://www.knowledgegate.in/

Knowledge Gate Website

https://www.knowledgegate.in/

Knowledge Gate Website

Necessary conditions for deadlock

A deadlock can occur if all these 4 conditions occur in the system simultaneously.

• Mutual exclusion

• Hold and wait

• No pre-emption

• Circular wait

https://www.knowledgegate.in/

Knowledge Gate Website

• Mutual exclusion: - At least one resource must be held in a non-sharable mode;
that is, only one process at a time can use the resource.

• If another process requests that resource, the requesting process must be
delayed until the resource has been released. And the resource Must be desired
by more than one process.

https://www.knowledgegate.in/

Knowledge Gate Website

• Hold and wait: - A process must be holding at least one resource and
waiting to acquire additional resources that are currently being held
by other processes. E.g. Plate and spoon

https://www.knowledgegate.in/

Knowledge Gate Website

• No pre-emption: - Resources cannot be pre-empted; that is, a resource can be
released only voluntarily by the process holding it, after that process has
completed its task.

https://www.knowledgegate.in/

Knowledge Gate Website

• Circular wait: - A set P0, P1, ..., Pn of waiting processes must exist such
that P0 is waiting for a resource held by P1, P1 is waiting for a resource
held by P2, ..., Pn−1 is waiting for a resource held by Pn, and Pn is
waiting for a resource held by P0.

https://www.knowledgegate.in/

Knowledge Gate Website

Deadlock Handling methods
1. Prevention: - Design such protocols that there is no possibility of deadlock.

2. Avoidance: - Try to avoid deadlock in run time so ensuring that the system will never enter a
deadlocked state.

3. Detection: - We can allow the system to enter a deadlocked state, then detect it, and recover.

4. Ignorance: - We can ignore the problem altogether and pretend that deadlocks never occur
in the system.

https://www.knowledgegate.in/

Knowledge Gate Website

Prevention
• It means designing such systems where there is no possibility of existence of

deadlock. For that we have to remove one of the four necessary condition of
deadlock.

Polio vaccine

https://www.knowledgegate.in/

Knowledge Gate Website

• Mutual exclusion: - In prevention approach, there is no solution for mutual
exclusion as resource can’t be made sharable as it is a hardware property and
process also can’t be convinced to do some other task.

• In general, however, we cannot prevent deadlocks by denying the mutual-
exclusion condition, because some resources are intrinsically non-sharable.

https://www.knowledgegate.in/

Knowledge Gate Website

Hold & wait

1. Conservative Approach: Process is allowed to run if & only if it has acquired all
the resources.

2. Alternative protocol: A process may request some resources and use them.
Before it can request any additional resources, it must release all the resources
that it is currently allocated.

3. Wait time out: We place a max time outs up to which a process can wait. After
which process must release all the holding resources & exit.

P1

R1 R2

P2

https://www.knowledgegate.in/

Knowledge Gate Website

No pre-emption

• If a process requests some resources

• We first check whether they are available. If they are, we allocate them.

• If they are not,

• We check whether they are allocated to some other process that is waiting for
additional resources. If so, we pre-empt the desired resources from the waiting process
and allocate them to the requesting process (Considering Priority).

• If the resources are neither available nor held by a waiting process, the requesting
process must wait, or may allow to pre-empt resource of a running process Considering
Priority.

https://www.knowledgegate.in/

Knowledge Gate Website

Circular wait

• We can eliminate circular wait problem by giving a natural number mapping to
every resource and then any process can request only in the increasing order
and if a process wants a lower number, then process must first release all the
resource larger than that number and then give a fresh request.

https://www.knowledgegate.in/

Knowledge Gate Website

• Problem with Prevention
• Different deadlock Prevention approach put different type of restrictions or

conditions on the processes and resources Because of which system becomes
slow and resource utilization and reduced system throughput.

https://www.knowledgegate.in/

Knowledge Gate Website

Avoidance

https://www.knowledgegate.in/

Knowledge Gate Website

• So, in order to avoid deadlock in run time, System try to maintain some books
like a banker, whenever someone ask for a loan(resource), it is granted only
when the books allow.

https://www.knowledgegate.in/

Knowledge Gate Website

Avoidance

• To avoiding deadlocks we require additional information about how resources are to be
requested. which resources a process will request during its lifetime.

• With this additional knowledge, the operating system can decide for each request
whether process should wait or not.

https://www.knowledgegate.in/

Knowledge Gate Website

Max Need
E F G

P0 4 3 1
P1 2 1 4
P2 1 3 3
P3 5 4 1

System Max
E F G
8 4 6

Current Need
E F G

P0

P1

P2

P3

Allocation
E F G

P0 1 0 1
P1 1 1 2
P2 1 0 3
P3 2 0 0

Available
E F G

https://www.knowledgegate.in/

Knowledge Gate Website

• Safe sequence: some sequence in which we can
satisfies demand of every process without going into
deadlock, if yes, this sequence is called safe sequence.

• Safe Sate: If their exist at least one possible safe
sequence.

• Unsafe Sate: If their exist no possible safe sequence.

https://www.knowledgegate.in/

Knowledge Gate Website

Banker’s Algorithm
Several data structures must be maintained to implement the banker’s algorithm. These data structures
encode the state of the resource-allocation system. We need the following data structures, where n is the
number of processes in the system and m is the number of resource types:

Max Need
E F G

P0 4 3 1
P1 2 1 4
P2 1 3 3
P3 5 4 1

Available
E F G
3 3 0

Available: A vector of length m indicates the number of available
resources of each type. If Available[j] equals k, then k instances of
resource type Rj are available.

Max: An n*m matrix defines the maximum demand of each process. If
Max[i][j] equals k, then process Pi may request at most k instances of
resource type Rj.

https://www.knowledgegate.in/

Knowledge Gate Website

Allocation: An n*m matrix defines the number of resources of each
type currently allocated to each process. If Allocation[i][j] equals k, then
process Pi is currently allocated k instances of resource type Rj.

Need/Demand/Requirement: An n*m matrix indicates the remaining
resource need of each process. If Need[i][j] equals k, then process Pi
may need k more instances of resource type Rj to complete its task.
Note that Need[i][j] = Max[i][j] − Allocation[i][j].
These data structures vary over time in both size and value.

Allocation
E F G

P0 1 0 1
P1 1 1 2
P2 1 0 3
P3 2 0 0

Current Need

E F G

P0 3 3 0

P1 1 0 2

P2 0 3 0

P3 3 4 1

https://www.knowledgegate.in/

Knowledge Gate Website

Safety Algorithm
We can now present the algorithm for finding out whether or not a system is in a safe state. This
algorithm can be described as follows:
1- Let Work and Finish be vectors of length m and n, respectively. Initialize Work = Available and
Finish[i] = false for i = 0, 1, ..., n − 1.

2- Find an index i such that both
 Finish[i] == false
 Needi ≤ Work
 If no such i exists, go to step 4.

3- Work = Work + Allocationi

 Finish[i] = true
 Go to step 2.

4- If Finish[i] == true for all i, then the system is in a safe state.
This algorithm may require an order of m*n2 operations to
determine whether a state is safe.

Work

E F G
3 3 0

Finish[i]

E F G
F F F

Need

E F G

P0 3 3 0

P1 1 0 2

P2 0 3 0

P3 3 4 1

https://www.knowledgegate.in/

Knowledge Gate Website

Resource Allocation Graph
• Deadlock can also be described in terms of a directed graph called a system resource-

allocation graph. This graph consists of a set of vertices V and a set of edges E.

• The set of vertices V is partitioned into two different types of nodes: P = {P1, P2, ..., Pn}, the set
consisting of all the active processes in the system, and R = {R1, R2, ..., Rm}, the set consisting of
all resource types in the system.

https://www.knowledgegate.in/

Knowledge Gate Website

• A directed edge from process Pi to resource type Rj is denoted by Pi → Rj is called a request
edge; it signifies that process Pi has requested an instance of resource type Rj and is currently
waiting for that resource.

• A directed edge from resource type Rj to process Pi is denoted by Rj → Pi is called an assignment
edge; it signifies that an instance of resource type Rj has been allocated to process Pi.

https://www.knowledgegate.in/

Knowledge Gate Website

https://www.knowledgegate.in/

Knowledge Gate Website

https://www.knowledgegate.in/

Knowledge Gate Website

https://www.knowledgegate.in/

Knowledge Gate Website

• Cycle in resource allocation graph is necessary but not sufficient condition for
detection of deadlock.

• If every resource have only one resource in the resource allocation graph than
detection of cycle is necessary and sufficient condition for deadlock detection.

https://www.knowledgegate.in/

Knowledge Gate Website

Deadlock detection and recovery

• Once a dead-lock is detected there are two options for recovery from a deadlock

• Process Termination
• Abort all deadlocked processes
• Abort one process at a time until the deadlock is removed

• Recourse pre-emption
• Selecting a victim
• Partial or Complete Rollback

https://www.knowledgegate.in/

Knowledge Gate Website

Ignorance(Ostrich Algorithm)

1. Operating System behaves like there is no concept
of deadlock.

2. Ignoring deadlocks can lead to system performance
issues as resources get locked by idle processes.

3. Despite this, many operating systems opt for this approach to save on the cost
of implementing deadlock detection.

4. Deadlocks are often rare, so the trade-off may seem justified. Manual restarts
may be required when a deadlock occurs.

https://www.knowledgegate.in/

Knowledge Gate Website

https://www.knowledgegate.in/

Knowledge Gate Website

Fork
• Requirement of Fork command

• In number of applications specially in those where work is of repetitive nature, like web
server i.e. with every client we have to run similar type of code. Have to create a separate
process every time for serving a new request.

• So it must be a better solution that instead to creating a new process every time from
scratch we must have a short command using which we can do this logic.

https://www.knowledgegate.in/

Knowledge Gate Website

• Idea of fork command
• Here fork command is a system command

using which the entire image of the process
can be copied and we create a new process,
this idea help us to complete the creation of
the new process with speed.

• After creating a process, we must have a
mechanism to identify weather in newly
created process which one is child and which
is parent.

• Implementation of fork command
• In general, if fork return 0 then it is child and

if fork return 1 then it is parent, and then
using a programmer level code we can
change the code of child process to behave
as new process.

https://www.knowledgegate.in/

Knowledge Gate Website

• Advantages of using fork commands
• Now it is relatively easy to create and manage similar types of process of repetitive nature

with the help of fork command.

• Disadvantage
• To create a new process by fork command we have to do system call as, fork is system

function
• Which is slow and time taking
• Increase the burden over Operating System

• Different image of the similar type of task have same code part which means we have the
multiple copy of the same data waiting the main memory

https://www.knowledgegate.in/

Knowledge Gate Website

• A thread is a basic unit of CPU utilization, consisting of a program counter, a stack, and a set of
registers, (and a thread ID.)

• Traditional (heavyweight) processes have a single thread of control - There is one program
counter, and one sequence of instructions that can be carried out at any given time.

• Multi-threaded applications have multiple threads within a single process, each having their
own program counter, stack and set of registers, but sharing common code, data, and certain
structures such as open files.

https://www.knowledgegate.in/

Knowledge Gate Website

Multithreading Models

• There are two types of threads to be managed in a modern system: User threads and kernel
threads.

• User threads are supported above the kernel, without kernel support. These are the threads
that application programmers would put into their programs.

• Kernel threads are supported within the kernel of the OS itself. All modern OS support kernel
level threads, allowing the kernel to perform multiple simultaneous tasks and/or to service
multiple kernel system calls simultaneously

https://www.knowledgegate.in/

Knowledge Gate Website

Many-To-One Model
• In the many-to-one model, many user-level threads

are all mapped onto a single kernel thread.

• However, if a blocking system call is made, then the
entire process blocks, even if the other user threads
would otherwise be able to continue.

• Because a single kernel thread can operate only on
a single CPU, the many-to-one model does not allow
individual processes to be split across multiple
CPUs.

• Green threads for Solaris implement the many-to-
one model in the past, but few systems continue to
do so today.

https://www.knowledgegate.in/

Knowledge Gate Website

One-To-One Model

• The one-to-one model creates a separate kernel thread to handle each user thread. It
overcomes the problems listed above involving blocking system calls and the splitting of
processes across multiple CPUs.

• However, the overhead of managing the one-to-one model is more significant, involving more
overhead and slowing down the system. Most implementations of this model place a limit on
how many threads can be created.

• Linux and Windows from 95 to XP implement the one-to-one model for threads.

https://www.knowledgegate.in/

Knowledge Gate Website

Many-To-Many Model
• The many-to-many model multiplexes any number

of user threads onto an equal or smaller number of
kernel threads, combining the best features of the
one-to-one and many-to-one models.

• Users have no restrictions on the number of threads
created. Blocking kernel system calls do not block
the entire process.

• Processes can be split across multiple processors.
Individual processes may be allocated variable
numbers of kernel threads, depending on the
number of CPUs present and other factors.

https://www.knowledgegate.in/

Knowledge Gate Website

https://www.knowledgegate.in/

Knowledge Gate Website

Memory Hierarchy
• Let first understand what we need from a memory

• Large capacity
• Less per unit cost
• Less access time(fast access)

• The memory hierarchy system consists of all storage devices employed in a computer system.

https://www.knowledgegate.in/

Knowledge Gate Website

Cycle Car Airbus

https://www.knowledgegate.in/

Knowledge Gate Website

Showroom Go down Factory

8 TB 32 GB 4 MB

https://www.knowledgegate.in/

Knowledge Gate Website

Locality of Reference

• The references to memory at any given interval of time tend to be confined within a few
localized areas in memory. This phenomenon is known as the property of locality of
reference. There are two types of locality of reference.

• Spatial Locality: Use of data elements in the nearby locations.

• Temporal Locality: Temporal locality refers to the reuse of specific data or resources,
within a relatively small-time duration, i.e. Most Recently Used.

https://www.knowledgegate.in/

Knowledge Gate Website

Duty of Operating System

• Operating system is responsible for the following activities in connection with
memory management:

1. Address Translation: Convert logical addresses to physical addresses for data retrieval.
2. Memory Allocation and Deallocation: Decide which processes or data segments to load

or remove from memory as needed.
3. Memory Tracking: Monitor which parts of memory are in use and by which processes.
4. Memory Protection: Implement safeguards to restrict unauthorized access to memory,

ensuring both process isolation and data integrity.

https://www.knowledgegate.in/

Knowledge Gate Website

• There can be two approaches for storing a process in main memory.

1. Contiguous allocation policy

2. Non-contiguous allocation policy

https://www.knowledgegate.in/

Knowledge Gate Website

Contiguous allocation policy

• We know that when a process is required to be executed it must be loaded to main memory,
by policy has two implications.
• It must be loaded to main memory completely for execution.

• Must be stored in main memory in contiguous fashion.

https://www.knowledgegate.in/

Knowledge Gate Website

Address Translation in Contiguous Allocation

1. Here we use a Memory Management Unit(OS) which contains a relocation register, which contains
the base address of the process in the main memory and it is added in the logical address every time.

2. In order to check whether address generated to CPU is valid(with in range) or invalid, we compare it
with the value of limit register, which contains the max no of instructions in the process.

3. So, if the value of logical address is less than limit, then it means it’s a valid request and we can
continue with translation otherwise, it is a illegal request which is immediately trapped by OS.

https://www.knowledgegate.in/

Knowledge Gate Website

Space Allocation Method in Contiguous Allocation

• Variable size partitioning: -In this policy, in starting, we treat the memory as a
whole or a single chunk & whenever a process request for some space, exactly
same space is allocated if possible and the remaining space can be reused again.

https://www.knowledgegate.in/

Knowledge Gate Website

• Fixed size partitioning: - here, we divide memory into fixed size partitions, which
may be of different sizes, but here if a process request for some space, then a
partition is allocated entirely if possible, and the remaining space will be waisted
internally.

xcvxc

https://www.knowledgegate.in/

Knowledge Gate Website

• First fit policy: - It states searching the memory from the base and will allocate first partition
which is capable enough.

• Advantage: - simple, easy to use, easy to understand

• Disadvantage: -poor performance, both in terms of time and space

https://www.knowledgegate.in/

Knowledge Gate Website

• Best fit policy: - We search the entire memory and will allocate the smallest partition which is
capable enough.

• Advantage: - perform best in fix size partitioning scheme.

• Disadvantage: - difficult to implement, perform worst in variable size partitioning as the
remaining spaces which are of very small size.

https://www.knowledgegate.in/

Knowledge Gate Website

• Worst fit policy: - It also searches the entire memory and allocate the largest partition
possible.
• Advantage: - perform best in variable size partitioning

• Disadvantage: - perform worst in fix size partitioning, resulting into large internal
fragmentation.

https://www.knowledgegate.in/

Knowledge Gate Website

Q Consider five memory partitions of size 100 KB, 500 KB, 200 KB, 300 KB, and 600 KB, where KB
refers to kilobyte. These partitions need to be allotted to four processes of sizes 212 KB, 417 KB,
112 KB and 426 KB in that order?

https://www.knowledgegate.in/

Knowledge Gate Website

• Next fit policy: - Next fit is the modification in the best fit where, after satisfying a request, we
start satisfying next request from the current position.

https://www.knowledgegate.in/

Knowledge Gate Website

• External fragmentation: - External fragmentation is a function of contiguous
allocation policy. The space requested by the process is available in memory but,
as it is not being contiguous, cannot be allocated this wastage is called external
fragmentation.

The Big Cason Family want to celebrate a party

https://www.knowledgegate.in/

Knowledge Gate Website

• Internal fragmentation: - Internal fragmentation is a function of fixed size
partition which means, when a partition is allocated to a process. Which is either
the same size or larger than the request then, the unused space by the process in
the partition Is called as internal fragmentation

https://www.knowledgegate.in/

Knowledge Gate Website

• How can we solve external fragmentation?

• We can also swap processes in the main memory after fixed intervals of time
& they can be swapped in one part of the memory and the other part become
empty(Compaction, defragmentation). This solution is very costly in respect
to time as it will take a lot of time to swap process when system is in running
state.

• Either we should go for non-contiguous allocation, which means process can
be divided into parts and different parts can be allocated in different areas.

https://www.knowledgegate.in/

Knowledge Gate Website

Non-Contiguous Memory allocation(Paging)

• Paging is a memory-management scheme that permits the physical address
space of a process to be non-contiguous.

• Paging avoids external fragmentation

https://www.knowledgegate.in/

Knowledge Gate Website

• Secondary memory is divides into fixed size partition(because management is easy) all of them
of same size called pages(easy swapping and no external fragmentation).

• Main memory is divided into fix size partitions (because management is easy), each of them
having same size called frames(easy swapping and no external fragmentation).

• Size of frame = size of page

• In general number of pages are much more than number of frames (approx. 128 time)

https://www.knowledgegate.in/

Knowledge Gate Website

Translation process

1. CPU generate a logical address is divided into two parts - p and d
1. where p stands for page no and d stands for instruction offset.

2. The page number(p) is used as an index into a Page table

3. Page table base register(PTBR) provides the base of the page table and then the corresponding page no is
accessed using p.

4. Here we will finds the corresponding frame no (the base address of that frame in main memory in which the
page is stored)

5. Combine corresponding frame no with the instruction offset and get the physical address. Which is used to
access main memory.

https://www.knowledgegate.in/

Knowledge Gate Website

Page Table

1. Page table is a data structure not hardware.

2. Every process have a separate page table.

3. Number of entries a process have in the page table is the number of pages a process have in
the secondary memory.

4. Size of each entry in the page table is same it is corresponding frame number.

5. Page table is a data structure which is it self stored in main memory.

https://www.knowledgegate.in/

Knowledge Gate Website

• Advantage
• Removal of External Fragmentation

• Disadvantage
• Translation process is slow as Main Memory is accessed two times(one for page table and

other for actual access).

• A considerable amount of space a waisted in storing page table(meta data).

• System suffers from internal fragmentation(as paging is an example of fixed size partition).

• Translation process is difficult and complex to understand and implement.

https://www.knowledgegate.in/

Knowledge Gate Website

103 1 Thousand

106 1 Million

109 1 Billion

1012 1 Trillion

103 1 kilo

106 1 Mega

109 1 Giga

1012 1 Tera

1015 1 Peta

1018 1 Exa

1021 1 Zetta

1024 1 Yotta

210 1 kilo

220 1 Mega

230 1 Giga

240 1 Tera

250 1 Peta

260 1 Exa

270 1 Zetta

280 1 Yotta

https://www.knowledgegate.in/

Knowledge Gate Website

Address Length in bits n

No of Locations 2n

-

-

-

-

-

-

-

https://www.knowledgegate.in/

Knowledge Gate Website

Address Length in bits n

No of Locations 2n

Memory Size = Number of Location * Size of each Location

-

-

-

-

-

-

-

https://www.knowledgegate.in/

Knowledge Gate Website

-

-

-

-

-

-

-

Address Length in bits Upper Bound(Log2n)

No of Locations n

https://www.knowledgegate.in/

Knowledge Gate Website

-

-

-

-

-

-

-

Memory Size/ Size of each Location = Number of Location

Address Length in bits Upper Bound(Log2n)

No of Locations n

https://www.knowledgegate.in/

Knowledge Gate Website

• Page Table Size = No of entries in Page table * Size of each entry(f)
• Process Size = No of Pages * Size of each page

https://www.knowledgegate.in/

Knowledge Gate Website

S No SM LA MM PA p f d addressable Page Size

1 32 GB 128 MB 1B 1KB

2 42 33 11 1B
3 512GB 31 1B 512B
4 128GB 32GB 30 1B
5 28 14 4096B

https://www.knowledgegate.in/

Knowledge Gate Website

• A serious problem with page is, translation process is slow as page table is accessed two times
(one for page table and other for actual access).

• To solve the problems in paging we take the help of TLB. The TLB is associative, high-speed
memory.

https://www.knowledgegate.in/

Knowledge Gate Website

• Each entry in the TLB consists of two parts: a key (Page no) and a value (frame no). When the
associative memory is search for page no, the page no is compared with all page no
simultaneously. If the item is found, the corresponding frame no field is returned.

• The search is fast; the hardware, however, is expensive, TLB Contains the frequently referred
page numbers and corresponding frame number.

https://www.knowledgegate.in/

Knowledge Gate Website

• The TLB is used with page tables in the following way. The TLB contains only a few of the page-
table entries. When a logical address is generated by the CPU, its page number is presented to
the TLB. If the page number is found, its frame number is immediately available and is used to
access memory.

• If the page number is not in the TLB (known as a TLB Miss), then a memory reference to the
page table must be made.

https://www.knowledgegate.in/

Knowledge Gate Website

• Also we add the page number and frame number to the TLB, so that they will be found quickly
on the next reference.

• If the TLB is already full of entries, the operating system must select one for replacement i.e.
Page replacement policies.

• The percentage of times that a particular page number is found in the TLB is called the Hit
Ratio.

https://www.knowledgegate.in/

Knowledge Gate Website

• Effective Memory Access Time:
• Hit [TLB + Main Memory] + 1-Hit [TLB + 2 Main Memory]

• TLB removes the problem of slow access.

https://www.knowledgegate.in/

Knowledge Gate Website

• Disadvantage of TLB:
• TLB can hold the data of one process at a

time and in case of multiple context
switches TLB will be required to flush
frequently.

• Solution:
• Use multiple TLB’s but it will be costly.
• Some TLBs allow certain entries to be

wired down, meaning that they cannot be
removed from the TLB. Typically, TLB
entries for kernel code are wired down.

https://www.knowledgegate.in/

Knowledge Gate Website

Size of Page

• If we increase the size of page table then internal fragmentation increase but size of page
table decreases.

• If we decrease the size of page then internal fragmentation decrease but size of page table
increases.

• So we have to find what should be the size of the page, where both cost are minimal.

https://www.knowledgegate.in/

Knowledge Gate Website

Multilevel Paging / Hierarchical Paging
• Modern systems support a large logical address space (2^32 to 2^64).
• In such cases, the page table itself becomes excessively large and can contain millions of entries and can take a

lot of space in memory, so cannot be accommodated into a single frame.
• A simple solution to this is to divide page table into smaller pieces.
• One way is to use a two-level paging algorithm, in which the page table itself is also paged.

https://www.knowledgegate.in/

Knowledge Gate Website

https://www.knowledgegate.in/

Knowledge Gate Website

Segmentation
• Paging is unable to separate the user's view of memory from the

actual physical memory. Segmentation is a memory-management
scheme that supports this user view of memory.

• A logical address space is a collection of segments. Each segment
has a name and a length. The addresses specify both the
segment name and the offset within the segment. The user
therefore specifies each address by two quantities: a segment
name and an offset.

• Segments can be of variable lengths unlike pages and are stored
in main memory.

https://www.knowledgegate.in/

Knowledge Gate Website

• Segment Table: Each entry in the segment table has
a segment base and a segment limit. The segment
base contains the starting physical address where
the segment resides in memory, and the segment
limit specifies the length of the segment.

• The segment number is used as an index to the
segment table. The offset d of the logical address
must be between 0 and the segment limit. If it is
not, we trap to the operating system.

• When an offset is legal, it is added to the segment
base to produce the address in physical memory of
the desired byte.Segmentation suffers from
External Fragmentation.

https://www.knowledgegate.in/

Knowledge Gate Website

Segmentation with Paging

• Since segmentation also suffers from external fragmentation, it is better to divide the segments into pages.

• In segmentation with paging a process is divided into segments and further the segments are divided into pages.

• One can argue it is segmentation with paging is quite similar to multilevel paging, but actually it is better,
because here when page table is divided, the size of partition can be different (as actually the size of different
chapters can be different). All properties of segmentation with paging is same as multilevel paging.

https://www.knowledgegate.in/

Knowledge Gate Website

Inverted Page Table

● The drawback of paging is that each page table may consist of millions of entries. These tables may consume

large amounts of physical memory just to keep track of how other physical memory is being used. To solve this

problem, we can use an Inverted Page Table.

● An inverted page table has one entry for each real page (or frame) of memory. Each entry consists of the virtual

address of the page stored in that real memory location, with information about the process that owns the page.

Thus, only one page table is in the system, and it has only one entry for each page of physical memory.

● Thus number of entries in the page table is equal to the number of frames in the physical memory.

https://www.knowledgegate.in/

Knowledge Gate Website

Virtual Memory

1. To enable multiprogramming and optimize memory, modern computing often uses pure
demand paging to keep multiple processes in memory.

2. Pure Demand Paging: A memory management scheme where a process starts with no pages
in memory. Pages are only loaded when explicitly required during execution.
1. Process starts with zero pages in memory. Immediate page fault occurs.
2. Load the needed page into memory. Execution resumes after the required page is loaded

into memory.
3. Additional page faults occur as the process continues and requires new pages.
4. Execution proceeds without further faults once all necessary pages are in memory. The

key principle is to only load pages when absolutely necessary.

https://www.knowledgegate.in/

Knowledge Gate Website

• Advantage
• A program would no longer be constrained by the amount of physical memory that is

available, Allows the execution of processes that are not completely in main memory, i.e.
process can be larger than main memory.

• More programs could be run at the same time as use of main memory is less.

• Disadvantages
• Virtual memory is not easy to implement.
• It may substantially decrease performance if it is used carelessly (Thrashing)

https://www.knowledgegate.in/

Knowledge Gate Website

Implementation of Virtual Memory

• We add a new column in page table, which have
binary value 0 or Invalid which means page is not
currently in main memory, 1 or valid which means
page is currently in main memory.

• Page Fault: - When a process tries to access a page
that is not in main memory then a Page Fault
Occurs.

https://www.knowledgegate.in/

Knowledge Gate Website

Steps to handle Page Fault
1. If the reference was invalid, it means there is a page fault and page is not currently in
main-memory, now we have to load this required page in main-memory.

2. We find a free frame if available we can brought in desired page, but if not we have to
select a page as a victim and swap it out from main memory to secondary memory and then
swap in the desired page(situation effectively doubles the page-fault service time).

https://www.knowledgegate.in/

Knowledge Gate Website

3. We can reduce this overhead by using a Modify bit or Dirty Bit as a new column in page table.

3.1. The modify bit for a page is set whenever the page has been modified. In this case, we
must write the page to the disk.

3.2. If the modify bit is not set: It means the page has not been modified since it was read
into the main memory. We need not write the memory page to the disk: it is already there.

https://www.knowledgegate.in/

Knowledge Gate Website

4. Now we modify the internal table kept with the process(PCB) and the page table to indicate
that the page is now in memory. We restart the instruction that was interrupted by the trap. The
process can now access the page as though it had always been in memory.

https://www.knowledgegate.in/

Knowledge Gate Website

Performance of Demand Paging

• Effective Access time for Demand Paging:
• (1 - p) x ma + p x page fault service time.

• Here, p: Page fault rate or probability of a page fault.

• ma is memory access time.

https://www.knowledgegate.in/

Knowledge Gate Website

Page Replacement Algorithms

• Now, we must solve a major problems to implement demand paging i.e. a page
replacement algorithm. Page Replacement will decide which page to replace next.

https://www.knowledgegate.in/

Knowledge Gate Website

Page Replacement Algorithms
• First In First Out Page Replacement Algorithm: - A FIFO replacement algorithm associates

with each page, the time when that page was brought into memory. When a page must be
replaced, the oldest page is chosen. i.e. the first page that came into the memory will be
replaced first.

• In the above example the number of page fault is 15.

https://www.knowledgegate.in/

Knowledge Gate Website

• The FIFO page-replacement algorithm is easy to understand and program. However, its
performance is not always good.

• Belady’s Anomaly: for some page-replacement algorithms, the page-fault rate may increase
as the number of allocated frames increases.

https://www.knowledgegate.in/

Knowledge Gate Website

Optimal Page Replacement Algorithm
• Replace the page that will not be used for the longest period of time.
• It has the lowest page-fault rate of all algorithms.
• Guarantees the lowest possible page fault rate for a fixed number of frames and will

never suffer from Belady's anomaly.
• Unfortunately, the optimal page-replacement algorithm is difficult to implement, because it

requires future knowledge of the reference string. It is mainly used for comparison studies.

https://www.knowledgegate.in/

Knowledge Gate Website

Least Recently Used (LRU) Page Replacement Algorithm

• We can think of this strategy as the optimal page-replacement algorithm looking backward in
time, rather than forward. Replace the page that has not been used for the longest period of
time.

• LRU is much better than FIFO replacement in term of page-fault. The LRU policy is often used
in industry. LRU also does not suffer from Belady’s Anomaly.

https://www.knowledgegate.in/

Knowledge Gate Website

Thrashing

1. When a process spends more time swapping pages than executing, it's called Thrashing. Low
CPU utilization prompts adding more processes to increase multiprogramming.

2. If a process needs more frames, it starts taking them from others, causing those processes to
also fault and swap pages. This empties the ready queue and lowers CPU utilization.

3. Responding to decreased CPU activity, the scheduler adds more processes, worsening the
issue. This leads to Thrashing: a cycle of increasing page faults, plummeting system
throughput, and rising memory-access times, ultimately resulting in no productive work.

https://www.knowledgegate.in/

Knowledge Gate Website

Solution-The Working Set Strategy

• This model uses a parameter Δ, to define the working set window. The set of pages in the
most recent Δ page references is the working set.

• If a page is in active use, it will be in the working set. If it is no longer being used, it will drop
from the working set.

• The working set is an approximation of the program's locality. The accuracy of the working set
depends on the selection of Δ . If Δ is too small, it will not encompass the entire locality; if Δ
is too large, it may overlap several localities.

https://www.knowledgegate.in/

Knowledge Gate Website

Disk
• Magnetic disks serve as the main

secondary storage in computers. Each disk
has a flat, circular platter with magnetic
surfaces for data storage.

• A read-write head hovers over these
surfaces, moving in unison on a disk arm.
Platters have tracks divided into sectors for
logical data storage.

• Disks spin at speeds ranging from 60 to 250
rotations per second, commonly noted in
RPM like 5,400 or 15,000.

track t spindle

sector s

cylinder c
read-write head

platter

arm

https://www.knowledgegate.in/

Knowledge Gate Website

• Total Transfer Time = Seek Time + Rotational Latency + Transfer Time
• Seek Time: - It is a time taken by Read/Write header to reach the correct track. (Always given in

question)
• Rotational Latency: - It is the time taken by read/Write header during the wait for the correct sector. In

general, it’s a random value, so far average analysis, we consider the time taken by disk to complete
half rotation.

• Transfer Time: - it is the time taken by read/write header either to read or write on a disk. In general,
we assume that in 1 complete rotation, header can read/write the either track, so

• total time will be = (File Size/Track Size) *time taken to complete one revolution.

https://www.knowledgegate.in/

Knowledge Gate Website

Disk scheduling
1. One of the responsibilities of the operating system is to use the hardware efficiently. For the disk drives, efficiency means

having less seek time, less waiting time and high data transfer rate. We can improve all of these by managing the order in
which disk I/O requests are serviced.

2. Whenever a process needs I/O to or from the disk, it issues a system call to the operating system. The request may specifies
several pieces of information: Whether this operation is input or output, disk address, Memory address, number of sectors to
be transferred.

3. If the desired disk drive and controller are available, the request can be serviced immediately. If the drive or controller is busy,
any new requests for service will be placed in the queue of pending requests for that drive.

4. When one request is completed, the operating system chooses which pending request to service next. How does the
operating system make this choice? Any one of several disk-scheduling algorithms can be used.

https://www.knowledgegate.in/

Knowledge Gate Website

FCFS (First Come First Serve)
The simplest form of disk scheduling is, of course, the first-come, first-served (FCFS) algorithm. In FCFS,
the requests are addressed in the order they arrive in the disk queue. This algorithm is intrinsically fair,
but it generally does not provide the fastest service.

Advantages:
• Easy to understand easy to use
• Every request gets a fair chance
• No starvation (may suffer from convoy effect)

Disadvantages:
• Does not try to optimize seek time, or waiting time.

https://www.knowledgegate.in/

Knowledge Gate Website

https://www.knowledgegate.in/

Knowledge Gate Website

SSTF(Shortest Seek Time First) Scheduling
• Major component in total transfer time is seek time, in order to reduce seek time if we service

all the requests close to the current head position, this idea is the basis for the SSTF algorithm.
• In SSTF, the request nearest to the disk arm will get executed first i.e. requests having shortest

seek time are executed first. Although the SSTF algorithm is a substantial improvement over
the FCFS algorithm, it is not optimal.

• Advantages:
• Seek movements decreases
• Throughput increases
•

• Disadvantages:
• Overhead to calculate the closest request.
• Can cause Starvation for a request which is far from the current location of the header
• High variance of response time and waiting time as SSTF favors only closest requests

https://www.knowledgegate.in/

Knowledge Gate Website

https://www.knowledgegate.in/

Knowledge Gate Website

SCAN/ Elevator Algorithm

• The disk arm starts at one end of the disk and moves towards the other end, servicing requests as
it reaches each track, until it gets to the other end of the disk.

• At the other end, the direction of head movement is reversed, and servicing continues. The head
continuously scans back and forth across the disk.

Advantages:
• Simple easy to understand and use
• No starvation but more wait for some random process
• Low variance and Average response time

Disadvantages:
• Long waiting time for requests for locations just visited by disk arm.
• Unnecessary move to the end of the disk, even if there is no request.

https://www.knowledgegate.in/

Knowledge Gate Website

https://www.knowledgegate.in/

Knowledge Gate Website

C-SCAN Scheduling

• When the disk head reaches one end and changes direction, fewer requests are nearby since
those cylinders were just serviced. Most pending requests are at the opposite end, having
waited the longest.

• Circular-scan is a variant of SCAN designed to provide a more uniform wait time. Like SCAN, C-
SCAN moves the head from one end of the disk to the other, servicing requests along the way.
When the head reaches the other end, however, it immediately returns to the beginning of
the disk without servicing any requests on the return trip.

Advantages:
• Provides more uniform wait time compared to SCAN
• Better response time compared to scan

Disadvantage:
• More seeks movements in order to reach starting position

https://www.knowledgegate.in/

Knowledge Gate Website

https://www.knowledgegate.in/

Knowledge Gate Website

LOOK Scheduling

• It is similar to the SCAN disk scheduling algorithm except the difference that the disk arm
inspite of going to the end of the disk goes only to the last request to be serviced in front of
the head and then reverses its direction from there only. Thus, it prevents the extra delay
which occurred due to unnecessary traversal to the end of the disk.

Advantage: -
• Better performance compared to SCAN
• Should be used in case to less load

Disadvantage: -
• Overhead to find the last request
• Should not be used in case of more load.

https://www.knowledgegate.in/

Knowledge Gate Website

C LOOK
• As LOOK is similar to SCAN algorithm, in similar way, C-LOOK is similar to C-SCAN disk

scheduling algorithm. In C-LOOK, the disk arm in spite of going to the end goes only to the last
request to be serviced in front of the head and then from there goes to the other end’s last
request. Thus, it also prevents the extra delay which occurred due to unnecessary traversal to
the end of the disk.

Advantage: -
• Provides more uniform wait time compared to LOOK
• Better response time compared to LOOK

Disadvantage: -
• Overhead to find the last request and go to initial position is more
• Should not be used in case of more load.

https://www.knowledgegate.in/

Knowledge Gate Website

https://www.knowledgegate.in/

Knowledge Gate Website

track t spindle

sector s

cylinder c
read-write head

platter

arm

https://www.knowledgegate.in/

Knowledge Gate Website

• Total Transfer Time = Seek Time + Rotational Latency + Transfer Time

• Seek Time: - It is a time taken by Read/Write header to reach the correct track. (Always given in
question)

• Rotational Latency: - It is the time taken by read/Write header during the wait for the correct
sector. In general, it’s a random value, so far average analysis, we consider the time taken by disk to
complete half rotation.

• Transfer Time: - it is the time taken by read/write header either to read or write on a disk. In
general, we assume that in 1 complete rotation, header can read/write the either track, so

• total time will be = (File Size/Track Size) *time taken to complete one revolution.

https://www.knowledgegate.in/

Knowledge Gate Website

Q Consider a disk where there are 512 tracks, each track is capable of holding 128
sector and each sector holds 256 bytes, find the capacity of the track and disk and
number of bits required to reach correct track, sector and disk.

https://www.knowledgegate.in/

Knowledge Gate Website

Q consider a disk where each sector contains 512 bytes and there are 400 sectors
per track and 1000 tracks on the disk. If disk is rotating at speed of 1500 RPM, find
the total time required to transfer file of size 1 MB. Suppose seek time is 4ms?

https://www.knowledgegate.in/

Knowledge Gate Website

Q Consider a system with 8 sector per track and 512 bytes per sector. Assume that
disk rotates at 3000 rpm and average seek time is 15ms standard. Find total time
required to transfer a file which requires 8 sectors to be stored.

a) Assume contiguous allocation

b) Assume Non- contiguous allocation

https://www.knowledgegate.in/

Knowledge Gate Website

File allocation methods

The main aim of file allocation problem is how disk space is utilized effectively and files can be
accessed quickly. Three major methods of allocating disk space are in wide use:

• Contiguous
• Linked
• Indexed

Each method has advantages and disadvantages. Although some systems support all three, it is
more common for a system to use one method for all files.

https://www.knowledgegate.in/

Knowledge Gate Website

Contiguous Allocation

• Contiguous allocation requires that each file occupy a set of contiguous blocks
on the disk.

• In directory usually we store three column file name, start dba and length of file
in number of blocks.

https://www.knowledgegate.in/

Knowledge Gate Website

• Advantage
• Accessing a file that has been allocated contiguously is easy. Thus, both

sequential and direct access can be supported by contiguous allocation.

• Disadvantage
• Suffer from huge amount of external fragmentation.
• Another problem with contiguous allocation is file modification

https://www.knowledgegate.in/

Knowledge Gate Website

Linked Allocation

• With linked allocation, each file is a linked list of disk blocks; the disk blocks may be
scattered anywhere on the disk. The directory contains a pointer to the first and last
blocks of the file.

https://www.knowledgegate.in/

Knowledge Gate Website

• Advantage: -
• To create, read, write a new file is simply easy. The size of a file need not be declared when the

file is created. A file can continue to grow as long as free blocks are available.

• There is no external fragmentation with linked allocation, and any free block on the free-space
list can be used to satisfy a request.

• Disadvantage: -
• Only sequential access is possible, To find the ith block of a file, we must start at the beginning

and follow the pointers until we get to the ith block.

• Another disadvantage is the space required for the pointers, so each file requires slightly more
space than it would otherwise.

https://www.knowledgegate.in/

Knowledge Gate Website

Indexed Allocation

• Indexed allocation solves problems of contiguous and linked allocation, by bringing all the
pointers together into one location: the index block.

https://www.knowledgegate.in/

Knowledge Gate Website

• Each file has an index block containing an array of disk-block addresses. The
directory entry points to this index block.

• When a file is created, all index block pointers are null. Writing to the ith block
updates the corresponding index-block entry with a block address from the free-
space manager.

• The size of the index block is a trade-off: it should be small to save space but
large enough to accommodate pointers for big files.

https://www.knowledgegate.in/

Knowledge Gate Website

• Linked scheme: To allow for large files, we can link together several index blocks. For example,
an index block might contain a small header giving the name of the file and a set of the first
100 disk-block addresses. The next address (the last word in the index block) is null (for a small
file) or is a pointer to another index block (for a large file).

https://www.knowledgegate.in/

Knowledge Gate Website

• Multilevel index. A variant of linked representation uses a first-level index block to point to a
set of second-level index blocks, which in turn point to the file blocks.

• To access a block, the operating system uses the first-level index to find a second-level index
block and then uses that block to find the desired data block. This approach could be
continued to a third or fourth level, depending on the desired maximum file size.

https://www.knowledgegate.in/

Knowledge Gate Website

• Combined scheme: In UNIX-based systems, the file’s Inode stores the first 15 pointers from the
index block. The first 12 point directly to data blocks, eliminating the need for a separate index
block for small files.

• The next three pointers are for indirect blocks: the first for a single indirect block, the second
for a double indirect block, and the last for a triple indirect block, each increasingly indirecting
to the actual data blocks.

https://www.knowledgegate.in/

Knowledge Gate Website

• Advantage
• Indexed allocation supports direct access, without suffering from external fragmentation,

because any free block on the disk can satisfy a request for more space.

• Disadvantage
• Indexed allocation does suffer from wasted space. The pointer overhead of the index block

is generally greater than the pointer overhead of linked allocation.

https://www.knowledgegate.in/

Knowledge Gate Website

https://www.knowledgegate.in/

Knowledge Gate Website

Free-Space Management

• Since disk space is limited, we need to reuse the space from deleted files for new files, if possible. To keep track
of free disk space, the system maintains a free-space list. The free-space list records all free disk blocks—those
not allocated to some file or directory.

• To create a file, we search the free-space list for the required amount of space and allocate that space to the new
file. This space is then removed from the free-space list. When a file is deleted, its disk space is added to the
free-space list.

https://www.knowledgegate.in/

Knowledge Gate Website

Linked List
• A approach to free-space management is to link

together all the free disk blocks, keeping a pointer
to the first free block in a special location on the
disk and caching it in memory.

• This first block contains a pointer to the next free
disk block, and so on.

• This scheme is not efficient; to traverse the list, we
must read each block, which requires substantial
I/O time. However, operating system simply needs a
free block so that it can allocate that block to a file,
so the first block in the free list is used.

https://www.knowledgegate.in/

Knowledge Gate Website

Bit Vector
• Frequently, the free-space list is implemented as a bit map or bit vector. Each block is represented by 1

bit. If the block is free, the bit is 1; if the block is allocated, the bit is 0.

• For example, consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25, 26, and 27 are free
and the rest of the blocks are allocated. The free-space bit map would be
001111001111110001100000011100000 ...

• The main advantage of this approach is its relative simplicity and its efficiency in finding the first free
block or n consecutive free blocks on the disk.

https://www.knowledgegate.in/

Knowledge Gate Website

• Unfortunately, bit vectors are inefficient unless the entire vector is kept in main memory. Keeping it in
main memory is possible for smaller disks but not necessarily for larger ones.

• A 1.3-GB disk with 512-byte blocks would need a bit map of over 332 KB to track its free blocks.

• A 1-TB disk with 4-KB blocks requires 256 MB to store its bit map. Given that disk size constantly
increases, the problem with bit vectors will continue to escalate as well.

https://www.knowledgegate.in/

Knowledge Gate Website

https://www.knowledgegate.in/

Knowledge Gate Website

File organization

• File organization refers to the way data is stored in a file. File organization is very important
because it determines the methods of access, efficiency, flexibility and storage devices to use.

• Four methods of organizing files:
• 1. Sequential file organization:

• a. Records are stored and accessed in a particular sorted order using a key field.
• b. Retrieval requires searching sequentially through the entire file record by record to

the end.
• 2. Random or direct file organization:

• a. Records are stored randomly but accessed directly.
• b. To access a file which is stored randomly, a record key is used to determine where a

record is stored on the storage media.
• c. Magnetic and optical disks allow data to be stored and accessed randomly.

https://www.knowledgegate.in/

Knowledge Gate Website

• 3. Serial file organization:
• a. Records in a file are stored and accessed one after another.
• b. This type of organization is mainly used on magnetic tapes.

• 4. Indexed-sequential file organization method:
• Almost similar to sequential method only that, an index is used to enable

the computer to locate individual records on the stage media
• For example, on a magnetic drum, records are stored sequentially on the

tracks. However, each record is assigned an index that can be used to
access it directly.

https://www.knowledgegate.in/

Knowledge Gate Website

File access mechanism

• Sequential access:
• it is the simplest access mechanism in which information is stored in a file are exist in an order such that one record is

process after the other
• for example editors and compilers usually access file in this manner. next line

• Direct Access:
• It is an alternative method for accessing a file, which is based on the disk model of a file, since disk allow random access

to any block or a record of a file
• for this method, a file is viewed as a numbered sequence of blocks or records which are read/written in an arbitrary

manner that is there is no restriction on the order of recording or writing
• it is well suited for database management system.

• Index access
• In this method and alternate index is created which contain key field and a pointer to the various blocks.
• To find and entry in the file for a key value we first search the index and then use the pointer to directly excess of file and

find the desired entry

https://www.knowledgegate.in/

Knowledge Gate Website

Directory

• A directory is similar to a "folder" in everyday terminology, and it exists within a
file system.

• It's a virtual container where multiple files and other directories (often called
subdirectories) can reside.

• It organizes the file system in a hierarchical manner, meaning directories can
contain subdirectories, which may contain further subdirectories, and so on.

https://www.knowledgegate.in/

Knowledge Gate Website

Operations that Can Be Performed on a Directory
1. Create Directory: Make a new directory to store files and subdirectories.
2. Delete Directory: Remove an existing directory, usually only if it's empty.
3. Rename Directory: Change the name of a directory.
4. List Contents: View the files and subdirectories within a directory.
5. Move Directory: Relocate a directory to a different path in the file system.
6. Copy Directory: Make a duplicate of a directory, including its files and

subdirectories.
7. Change Directory: Switch the working directory to a different one.
8. Search Directory: Find specific files or subdirectories based on certain criteria

like name or file type.
9. Sort Files: Arrange the files in a directory by name, date, size, or other

attributes.
10. Set Permissions: Change the access controls for a directory (read, write,

execute).

https://www.knowledgegate.in/

Knowledge Gate Website

Feature Single-Level Directory Two-Level Directory

User Isolation
No user-specific directories. All users
share the same directory space.

Each user has their own private
directory.

Organization
All files are stored in one directory,
making it less organized.

Files can be organized under user-
specific directories, allowing for better
file management.

Search Efficiency
Can be less efficient as all files are in a
single directory, requiring more time
to find a specific file.

More efficient due to fewer files in
each user-specific directory.

Access Control
Hard to implement user-specific
access controls because all files reside
in the same directory.

Easier to implement user-specific
access controls, enhancing security.

Complexity
Simpler to implement but can become
cluttered and difficult to manage with
many files.

Slightly more complex due to the need
for user management, but offers
better organization.

https://www.knowledgegate.in/

Knowledge Gate Website

Why It's Necessary
• Organization: It helps in sorting and locating files more efficiently.
• User-Friendliness: Directories make it easier for users to categorize their files by

project, file type, or other attributes.
• Access Control: Using directories, different levels of access permission can be

applied, providing an extra layer of security.

Features of Directories
• Metadata: Directories also store metadata about the files and subdirectories

they contain, such as permissions, ownership, and timestamps.
• Dynamic Nature: As files are added or removed, the directory dynamically

updates its list of contents.
• Links and Shortcuts: Some systems support the creation of pointers or links

within directories to other files or directories.

https://www.knowledgegate.in/

Knowledge Gate Website

Feature Sequential File Indexed File

Access Method
Records accessed one after another in
order

Records can be accessed directly using an
index

Speed of Access Slower, especially for large files Faster for random access, thanks to index

Storage Efficiency
Generally more efficient as no space is
used for index

Less efficient due to storage needed for
index

Update Complexity Simpler, usually involves appending
More complex; updating index needed for
record change

Use Case Suitable for batch processing, backups
Suitable for databases, directories with quick
lookup

https://www.knowledgegate.in/

Knowledge Gate Website

File Protection System

• Reliability:
• Reliability in a file protection system ensures that files are accessible and retrievable whenever needed,

without loss of data. Techniques such as backup, mirroring, and RAID configurations contribute to high
reliability.

• Security:
• Security mechanisms protect files from unauthorized access, modification, or deletion. Encryption, firewall

settings, and secure file transfer protocols like SFTP can be employed to safeguard files.
• Controlled Access:

• Controlled access specifies who can do what with a file. Users are given permissions like read, write, and
execute (r-w-x), often categorized into roles for easy management. Controlled access is crucial for
maintaining the integrity and confidentiality of files.

• Access Control:
• Access control mechanisms like Access Control Lists (ACLs) or Role-Based Access Control (RBAC) define rules

specifying which users or system processes are granted access to files and directories. They can also specify
the type of operations (read, write, execute) permitted.

• In summary, a robust file protection system is multi-layered, incorporating reliability measures, strong security
protocols, and detailed access control mechanisms to ensure the safe and efficient management of files.

https://www.knowledgegate.in/

Knowledge Gate Website

Access Matrix

• The Access Matrix is a conceptual framework used in computer security to describe the
permissions that different subjects (such as users or processes) have when accessing different
objects (such as files, directories, or resources).

• In this matrix, each row represents a subject and each column represents an object. The entry
at the intersection of a row and column defines the type of access that the subject has to the
object.

https://www.knowledgegate.in/

Knowledge Gate Website

• Matrix Form: In its most straightforward representation, the Access
Matrix is a table where the cell at the intersection of row i and
column j contains the set of operations that subject i can perform on
object j.

• Here, 'r' indicates read permission, 'w' indicates write permission, and
'-' indicates no permission.

File A File B File C

User 1 r-w r -

User 2 r w r-w

User 3 - r w

https://www.knowledgegate.in/

Knowledge Gate Website

• Access Control Lists (ACLs): Each object's column in the matrix can be
converted to an Access Control List, which lists all subjects and their
corresponding permissions for that object.

• File A:
• User 1: r-w
• User 2: r

• File B:
• User 1: r
• User 2: w
• User 3: r

https://www.knowledgegate.in/

Knowledge Gate Website

• Capability Lists: Each subject's row in the matrix can be converted into a
Capability List, which lists all objects and the operations the subject can
perform on them.

• User 1:
• File A: r-w
• File B: r

• User 2:
• File A: r
• File B: w
• File C: r-w

https://www.knowledgegate.in/

Knowledge Gate Website

• Sparse Matrix: In large systems, the Access Matrix is usually sparse.
Special data structures can be used to represent only the non-empty
cells to save space.

https://www.knowledgegate.in/

Knowledge Gate Website

Implementation of Access Matrix

1. Global Table: A global table is essentially the raw access matrix itself, where each cell denotes the permissions
a subject has on an object. While straightforward, this method is not practical for large systems due to the
sparsity of the matrix and the associated storage overhead.

2. Access Lists for Objects: Here, the focus is on objects like files or directories. Each object maintains an Access
Control List (ACL) that records what operations are permissible by which subjects. ACLs are object-centric and
make it easy to determine all access rights to a particular object. However, this approach makes it cumbersome
to list all capabilities of a particular subject across multiple objects.

3. Capability Lists for Domains: In this subject-centric approach, each subject or domain maintains a list of
objects along with the operations it can perform on them, known as a Capability List. This makes it
straightforward to manage and review the permissions granted to each subject. On the downside, revoking or
changing permissions across all subjects for a specific object can be more challenging.

4. Lock-Key Mechanism: In a lock-key mechanism, each object is assigned a unique "lock," and subjects are
granted "keys" to unlock these locks. When a subject attempts to access an object, the system matches the key
with the lock to determine if the operation is permissible. This approach can be seen as an abstraction over the
access matrix and can be used to dynamically change permissions with minimal overhead.

https://www.knowledgegate.in/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222
	Slide 223
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236
	Slide 237
	Slide 238
	Slide 239
	Slide 240
	Slide 241
	Slide 242
	Slide 243
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 248
	Slide 249
	Slide 250
	Slide 251
	Slide 252
	Slide 253
	Slide 254
	Slide 255
	Slide 256
	Slide 257
	Slide 258
	Slide 259
	Slide 260
	Slide 261
	Slide 262
	Slide 263
	Slide 264
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287
	Slide 288
	Slide 289
	Slide 290

