
http://www.knowledgegate.in/gate

Video chapters
• Chapter-1 (Basic Concepts and Automata Theory): Introduction to Theory of Computation- Automata, Computability and

Complexity, Alphabet, Symbol, String, Formal Languages, Deterministic Finite Automaton (DFA)- Definition, Representation,
Acceptability of a String and Language, Non Deterministic Finite Automaton (NFA), Equivalence of DFA and NFA, NFA with ε-
Transition, Equivalence of NFA’s with and without ε-Transition, Finite Automata with output- Moore Machine, Mealy
Machine, Equivalence of Moore and Mealy Machine, Minimization of Finite Automata.

• Chapter-2 (Regular Expressions and Languages): Regular Expressions, Transition Graph, Kleen’s Theorem, Finite Automata
and Regular Expression- Arden’s theorem, Algebraic Method Using Arden’s Theorem, Regular and Non-Regular Languages-
Closure properties of Regular Languages, Pigeonhole Principle, Pumping Lemma, Application of Pumping Lemma,
Decidability- Decision properties, Finite Automata and Regular Languages

• Chapter-3 (Regular and Non-Regular Grammars): Context Free Grammar(CFG)-Definition, Derivations, Languages, Derivation
Trees and Ambiguity, Regular Grammars-Right Linear and Left Linear grammars, Conversion of FA into CFG and Regular
grammar into FA, Simplification of CFG, Normal Forms- Chomsky Normal Form(CNF), Greibach Normal Form (GNF), Chomsky
Hierarchy, Programming problems based on the properties of CFGs.

• Chapter-4 (Push Down Automata and Properties of Context Free Languages): Nondeterministic Pushdown Automata
(NPDA)- Definition, Moves, A Language Accepted by NPDA, Deterministic Pushdown Automata(DPDA) and Deterministic
Context free Languages(DCFL), Pushdown Automata for Context Free Languages, Context Free grammars for Pushdown
Automata, Two stack Pushdown Automata, Pumping Lemma for CFL, Closure properties of CFL, Decision Problems of CFL,
Programming problems based on the properties of CFLs.

• Chapter-5 (Turing Machines and Recursive Function Theory): Basic Turing Machine Model, Representation of Turing
Machines, Language Acceptability of Turing Machines, Techniques for Turing Machine Construction, Modifications of Turing
Machine, Turing Machine as Computer of Integer Functions, Universal Turing machine, Linear Bounded Automata, Church’s
Thesis, Recursive and Recursively Enumerable language, Halting Problem, Post’s Correspondance Problem, Introduction to
Recursive Function Theory.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Chapter-1 (Basic Concepts and Automata Theory):
Introduction to Theory of Computation- Automata,
Computability and Complexity, Alphabet, Symbol, String,
Formal Languages, Deterministic Finite Automaton (DFA)-
Definition, Representation, Acceptability of a String and
Language, Non Deterministic Finite Automaton (NFA),
Equivalence of DFA and NFA, NFA with ε-Transition,
Equivalence of NFA’s with and without ε-Transition, Finite
Automata with output- Moore Machine, Mealy Machine,
Equivalence of Moore and Mealy Machine, Minimization of
Finite Automata.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

INTRODUCTION TO THEORY OF
COMPUTATIONS

• The theory of computation is a branch of
theoretical computer science that deals with
the study of algorithms and computational
complexity. It aims to answer fundamental
questions about
• what can be computed
• how efficiently it can be done
• and what limitations exist in terms of

computational power.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• As word suggests ‘TOC’ is the study of 'mathematical' machines or systems
called automata.

• Theory of computation can be considered as the study of all kinds of
computational model in the field of computer science and it also considers how
efficiently the problem can be solved (but not is depth).

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

PROBLEM
• Now a day’s machines (digital, analog, mechanical) play a very

important role in the development of human, we need some
mechanism (language) to communicate with the machines.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

SOLUTION
• We need a language for communication with machines. But we do not require

natural languages to communicate with the machines, as natural languages are
very complex and machine interaction require very fewer complex languages
compare to natural languages.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Languages can be of two types formal languages and informal languages, here in
this subject we will only discuss formal languages.

• Dictionary defines the term informally as ‘a system suitable for the expression of
certain ideas, facts or concepts including a set of symbols for their manipulation’.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

METHODS TO DEFINE LANGUAGE
• In natural language we define the list of words in a dictionary because they are

finite and predefined, but we cannot list all the sentence which can be formed
using these words as they are infinite.

• So, we have a mechanism called grammar/rules
using which we can decide which sentence is valid
and which is invalid.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

MATHEMATICL DEFINATION OF LANGUAGE

• SYMBOL- Symbols are the basic building blocks, which
can be any character/token. (cow, sheep, , white flag,
, , etc.) (in English we called them as letters).

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• ALPHABET- An alphabet is a finite non empty set of symbols,
(every language has its own alphabet). here in toc, we use symbol
Σ for depicting alphabet. e.g. Σ = {0,1}. for English Σ = {a, b, c, …., z}
(in English also alphabet is a set of letters, thought in general we
called them as alphabet).

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• STRING - It is a finite sequence of symbols (which are the
member of set alphabet). E.g. Σ = {a, b} String- aabb, aa, b, so
on. (in English we called them as words).

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• LANGUAGE - A language is defined as a set of strings. (in natural
language (set of words(predefined) and grammar) we apply this
model from words to sentence).

• In the next level we consider programs as a string and programming
constructs/tokens like int, floats as letters/symbols.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Similarly, in our system we have finite number of symbols/letters but using those
letters we can generate infinite strings/words.

• So, we may have languages that have infinite number of words, so it is not
possible for us to list them, we have to use some framework, which can
somehow represent the same language. There are mainly two methods to
represent a language

• by a grammar that generates a language [RG generate RL]
• by a machine that accepts a language [FA accept RL language]

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

GrammarMachine

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• The Theory of Formal Languages is a branch of theoretical computer science that
deals with the study of formal languages and their properties.

• The theory of formal languages includes the study of formal grammars, which are
used to define the syntax of formal languages, and automata theory, which deals
with the study of abstract machines used to recognize, generate, or process
formal languages. Some of the key concepts studied in the theory of formal
languages include regular languages, context-free languages, context-sensitive
languages, recursively enumerable languages, and the Chomsky hierarchy.

• The theory of formal languages has important applications in areas such as
compilers, parsers, and other software engineering tools, as well as in the design
of programming languages and the study of natural language processing.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q if ∑ = {a, b} then, find the following?

∑0 =

∑1 =

∑2 =

∑3 =

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• ∑K is the set of all the strings from the alphabet ∑ of length exactly K.

• ∑k = {W | |W| = K} (using the symbols from the alphabet ∑)

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Kleene closure- If ∑ is a set of symbols, then we use ∑* to denote the set of
strings obtained by concatenating zero or more symbols from ∑ of any length,
in general any string of any length which can have only symbols specified in ∑.

• ∑* = ⋃!"#
!"$ 𝑤	 𝑤 = 𝑖} (using the symbols from the alphabet ∑)

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Positive closure – If ∑ is a set of symbols, then we use ∑+ to denote the set of
strings obtained by concatenating one or more symbols from ∑ of any length,
in general any string of any length which can have only symbols specified in ∑
(except ∈).

• ∑+ = ⋃!"%
!"$ 𝑤	 𝑤 = 𝑖} (using the symbols from the alphabet ∑)

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Automaton
• An automaton is defined as a self-operating system where energy, materials and

information are transformed, transmitted and used for performing some functions
without direct participation of man.

• The term is often used to describe a theoretical machine that operates according to a
set of rules and is capable of carrying out complex operations without human
intervention.

• Example: automatic machine tools, automatic packing machines, and automatic photo
printing machines.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

FINITE AUTOMATA
• A Finite automaton is a model that has a finite set of states (represented in the figure by

circles) and its control moves from one state to another state in response to external inputs
(represented by arrows).

• It is an abstract machine that is used to recognize patterns in strings of symbols. Finite
automata are widely used in computer science for pattern matching, lexical analysis, and
parsing, among other applications.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Finite automata can be broadly classified into two types-

1. Finite automata without output
1. Deterministic finite automata.
2. Non deterministic finite automata.
3. Non deterministic finite automata with ∈

2. Finite automata with output
1. Moore machine
2. Mealy machine

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• In general, this type of automata is characterized by machine having no
temporary storage, as it is severely limited in its capacity to remember things
during the computation.

• Only finite amount of information can be in the control unit by placing the unit
into a specific state but since the number of states is finite, a finite automaton
can only deal with situation in which the information to be stored at any time is
strictly bounded.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

DETERMINISTIC FINITE AUTOMATA
A deterministic finite automaton (DFA) is defined by 5-tuple (Q,S,d,S,F)
where:
• Q is a finite and non-empty set of states
• S is a finite non-empty set of finite input alphabet
• d is a transition function, (d: Q × S à Q)
• S is initial state (always one) (SÎ Q)
• F is a set of final states (F Í Q) (0<=|F|<=N, where n is the number of

states)

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

DFA Designing
• A language a said to be regular language if it can be accepted by a

DFA.

• The best knowledge about DFA can be only understood by designing a
number of DFA, by doing so we will first understand the process of
DFA designing and secondly, we will understand Regular Language.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a minimal DFA that accepts all strings over the
alphabet ∑ = {a, b}, where every accepted string ‘w’ starts with
substring s = ‘abb’

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a minimal DFA that accepts all strings over the
alphabet ∑ = {a, b}. where every accepted string ‘w’ ends with
substring ‘s = bab’ ?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a minimal DFA that accepts all strings over the
alphabet ∑ = {a, b}. where every accepted string ‘w’ contains sub
string s= ‘aba’?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• The various components of the block diagram are
explained as follows:

• Input tape: The input tape is divided into squares,
each square containing a single symbol from the
input alphabet ∑. The end squares of the tape
contain the end marker ¢ at the left end and the end
marker $ at the right end. The absence of end
markers indicates that the tape is of infinite
length. The left-to-right sequence of symbols
between the two end markers is the input string to
be processed.

• Reading head (R-head): The head examines only one
square at a time and will move one square to the
right.

• Finite control: is the inference engine take care of
transition

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

NOTE-

• Produces a unique computation (or run) of the automaton for each input string.

• Deterministic refers to the uniqueness of the computation.

• DFAs are useful for doing lexical analysis (Spell check) in compiler design.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Representation
TRANSITION STATE DIAGRAM- (Graphical, easy to understand, easy
to design) A transition graph or a transition system is a finite
directed labelled graph in which each circle represents a state and
the directed edges indicate the transition of one state to another
state. The initial state is represented by a circle with an arrow
pointing towards it, the final state by two concentric circles.

TRANSITION TABLE- it is a two-dimensional table where number of
columns is equal to number of input alphabets and number of rows
is equal to number of states.

TRANSITION ID- δ {qi, a) = qj, this means that on a state qi take an
input symbol a machine will make a transition qj

d
S

a b

Q
q0

q1

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

ACCEPTANCE BY DFA
• Let ‘w’ be any string designed from the alphabet S, corresponding to w, if there

exist a transition for which it starts at the initial state and ends in any One of the
final states, then the string ‘w’ is said to be accepted by the finite automata. δ*
(q0, w) = qf for some qf ∈ F.

• Mathematically, it can be represented as: - L(M) = {w Î S* | d*(S, w) ÎF}

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a minimal DFA that accepts all strings over the
alphabet ∑ = {a, b} such that every accepted string start and end
with ‘a’?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a minimal DFA that accepts all strings over the
alphabet ∑ = {a, b} such that every accepted string start and end
with same symbol?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a minimal DFA that accepts all strings over the
alphabet ∑ = {a, b} such that every accepted string start and end
with different symbol?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a minimal DFA that accepts all strings over the
alphabet ∑ = {a, b} such that every accepted string w, is like
w=SX. S=aaa/bbb?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a minimal DFA that accepts all strings over the
alphabet ∑ = {a, b} such that every accepted string w, is like
w=XS. S=aaa/bbb?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a minimal DFA that accepts all strings over the
alphabet ∑ = {a, b} such that every accepted string w, is like
w=XSX. S=aaa/bbb?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a minimal DFA that accepts all strings over the alphabet ∑
= {a, b}, such that every string ‘w’ accepted must be like
i) |w| = 3

ii) |w|<=3

iii) |w|>=3

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a minimal DFA that accepts all strings over the alphabet ∑ = {a, b},
such that every string accepted must contain exactly two a’s, |w|a=2 ?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a minimal DFA that accepts all strings over the alphabet ∑ = {a,
b}, such that every string accepted must contain at least two a’s,
|w|a >= 2 ?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a minimal DFA that accepts all strings over the alphabet ∑ = {a,
b}, such that every string accepted must contain at most two a’s,
|w|a <= 2 ?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a minimal DFA that accepts all strings over the alphabet ∑ = {a,
b}, such that every string ‘w’ accepted must be like
i) |w| = 0(mod 3) ii) |w|=1(mod 4)

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a minimal DFA that accepts all strings over the alphabet ∑ = {a,
b}, such that every string accepted must contain
i) number of a is, |w|a = 0(mod 2)

iii) number of a is |w|b = 2(mod 3)

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a minimal DFA that accepts all strings over the alphabet ∑ = {a,
b} such that for every accepted string 2th from left end is always a ?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a minimal DFA that accepts all strings over the alphabet ∑ = {a,
b} such that for every accepted string 2nd from right end is always b ?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a minimal DFA that accepts all strings over the alphabet ∑ = {a,
b}, such that every string accepted must contain be like,
no of a = 0(mod 2) || no of b = 0(mod 2) ?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a minimal DFA that accepts all strings over the alphabet ∑ =
{0,1}, such that every string ‘w’ which is accepted has a decimal
equivalent 0(mod 3) ?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

COMPLIMENT OF DFA

Q Design a minimal DFA that accepts all strings over the alphabet ∑ = {a,
b}, such that every string accepted must not contain a substring ’aaa’?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

NON DETEMINISTIC FINITE AUTOMATA
• Non determinism means choice of move for an automaton. So rather than prescribing a

unique move in each situation, we allow a set of possible moves.

• Non deterministic machine are only theoretical machine i.e. in the first place they are not
implementable and neither we want to implement them, the only reason we study non-
determinism is because they are easy to design and easily be converted into deterministic
machine.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

FORMAL DESCRIPTION OF NDFA

• A Non-Deterministic finite automaton (NDFA) is a 5-tuple (Q,S,d,S,F)
where:
• Q is a finite and non-empty set of states

• S is a finite non-empty set of finite input alphabet

• d is a transition function d: Q × S à 2Q

• q0 is initial state (always one) (q0Î Q)

• F is a set of final states (F Í Q) (0<=|F|<=N), where n is the number of states

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Some points to remember
• Every DFA is also an NFA.

• Every NFA can be translated to an equivalent DFA, so their language accepting capability is
same.

• NFAs like DFA’s only recognize regular languages.

• It need not to be a complete system. There can be a state that doesn’t have any transition on
some input symbol.

• It is possible that a single state led to multiple transition on same input to different states.

• NOTE- A null transition is also possible for NFA, such special NFA are called Null-NFA. We will
discuss it later.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

PROPERTIES OF NFA

• i) Accepting power of NDFA= Accepting power of DFA.

• ii) NDFA is a theoretical engine and is not implementable, but it is very easy to
design compare to DFA.

• iii) No concept of dead state, therefore complementation of DFA is also not
possible.

• iv) NDFA will respond for only valid strings and no need to respond for invalid
strings. (it is a Incomplete system)

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

ACCEPTANCE BY NDFA

• Let ‘w’ be any string defined over the alphabet S, corresponding to w, there can
be multiple transitions for NFA starting from initial state, if there exist at least
one transition for which we start at the initial state and ends in any One of the
final state, then the string ‘w’ is said to be accepted by the non-deterministic
finite automata, otherwise not.

• Mathematically, it can be represented as, L(M) = {w Î S* | d*(q0, w) ÎF}

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a NDFA that accepts all strings over the alphabet ∑ = {a, b},
where every accepted string ‘w’ starts with substring s, Where s = ‘aba’ ?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a NDFA that accepts all strings over the alphabet ∑ = {a, b}.
where every accepted string ‘w’ ends with substring ‘s’, Where s = ‘bab’?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a minimal DFA that accepts all strings over the alphabet ∑ = {a,
b}. where every accepted string ‘w’ contains sub string s, Where s = ’aba’ ?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a NDFA that accepts all strings over the alphabet ∑ = {a, b}
such that every accepted string start and end with same symbol ?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a NDFA that accepts all strings over the alphabet ∑ = {a, b} such
that every accepted string start and end with different symbol ?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a minimal NDFA that accepts all strings over the alphabet ∑ =
{a, b} such that every accepted string w, is like w=SX , Where s = aaa/bbb

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a minimal NDFA that accepts all strings over the alphabet ∑ =
{a, b} such that every accepted string w, is like w=XS , Where s = aaa/bbb

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a minimal NDFA that accepts all strings over the alphabet ∑ =
{a, b} such that every accepted string w, is like w=XSX , Where s =
aaa/bbb ?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a NDFA that accepts all strings over the alphabet ∑ = {a, b}
such that for every accepted string 3rd from right end is always a ?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

NFA and DFA Equivalence
• In this topic we will be learning about the equivalence of NFA and DFA and how

an NFA can be converted to equivalent DFA. Let us take an example and
understand the conversion.

• Since every NFA and DFA has equal power that means, for every language if a
NFA is possible, then DFA is also possible.

• So, every NFA can be converted to DFA.

• The process of conversion of an NFA into a DFA is called Subset Construction.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• If NFA have ‘n’ states which is converted into DFA which ‘m’
states than the relationship between n and m will be

• 1<= m <= 2n

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Procedure for Conversion
• There lies a fixed algorithm for the NFA and DFA conversion. Following things

must be considered

• Initial state will always remain same.

• Start the construction of d’ with the initial state & continue for every new
state that comes under the input column and terminate the process
whenever no new state appears under the input column.

• Every subset of states that contain the final state of the NFA is a final state in
the resulting DFA.

• d’(q0 , q1, q2 , q3--------, qn-1,a) = ⋃!"#
!"$%& d(qi , a)

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Aspect DFA (Deterministic Finite Automata) NDFA (Nondeterministic Finite
Automata)

State Transition On each input symbol, transitions to
exactly one state.

Can transition to multiple states or
none on the same input symbol.

Determinism and
Uniqueness

Each state has a unique transition for
each input symbol.

A state can have multiple transitions
for the same input symbol.

Computation Path
Always has a single, unique

computation path for any input
string.

May have multiple computation paths
for the same input string.

Ease of Construction Generally simpler and more
straightforward to construct.

Can be more complex to construct
due to non-determinism.

Acceptance of Input
Accepts an input if it reaches a final

state after processing all input
symbols.

Accepts an input if at least one
computation path reaches a final

state.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

NFA WITH EPSILON MOVES (€-NFA)
• An automaton that consist of null transitions is called a Null- NFA i.e. we allow a transition on

null means empty string.
• €-NFA is a 5-tuple (Q,S,d,S,F) where:

• Q is a finite and non-empty set of states

• S is a finite non-empty set of finite input alphabet

• d is a transition function d: (Q × {S U ε}) à 2Q

• S is initial state (always one) (SÎ Q)

• F is a set of final states (F Í Q) (0<=|F|<=N, where n is the number of states

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

NULL-CLOSURE
• Null closure of a set Q is defined as a set of all the states, which are at zero distance

from the state Q. A set of all the states, that can be reached from the state and along a
null- transition.

• €-Closure(qi)- The set of all the states which are at zero distance from the state qi is
called €-closure(qi). Or the set of all the states that can be reached from the state qi
along € labelled transition path, is known as €-closure(qi).

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Every state is at zero distance to itself.

• In NFA or DFA, distance between two states is always 1, because there
could be no null transitions.

• The Null closure Q is always a non-empty and finite state, because
every state’s null closure is that state only.

• €-closure(Φ) = Φ

• €-closure (q0 , q1, q2 , q3--------, qn) =⋃!"#
!"$ d(€-closure(qi))

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

EQUIVALENCE BETWEEN NULL NFA TO NFA

• There will be no change in the initial state.

• No change in the total no. of states

• May be change in the number of final states.

• All the states will get the status of the final state in the resulting NFA,
whose €-closure contains at least one final state in the initial €-NFA.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Let us check for ẟ(q0, a) = ε-Closure [ẟ[ε-Closure(q0), a]]

• first, we find ε-Closure of q0: {q0, q1, q2}

• Now check transition of all three states on input symbol a we get: q0

• After that we again calculate the ε-Closure of the above result q0, we get the result as: {q0, q1,

q2}

• Similarly, we will check it for every state.

• All those states will be considered as a final state in which we have q2(final state in initial ε-

NFA) in there ε-Closure, i.e. all states will be final in this case.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Moore and Mealy Machine
• Both moore and mealy machine are special case of DFA
• Both acts like o/p producers rather than language acceptors
• In moore and mealy machine no need to define the final states
• No concepts of dead states and no concepts of final states
• Mealy and Moore Machines are equivalent in power.

Edward F MooreGeorge H Mealy

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Moore Machine

A Moore machine is a six-tuple (Q, ∑, Δ, δ, λ, q0), where

• Q is a finite set of states:

• ∑ is the input alphabet:

• Δ is the output alphabet.

• δ is the transition function Q x ∑ into Q

• λ is the output function mapping Q into Δ and

• q0 is the initial state.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Examples: The below table shows the transition table of a Moore Machine.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• In moore machine for every state output is associated.

• If the length of i/p string is n, then length of o/p string will be n+1

• Moore machine response for empty string Î

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q construct a Moore machine take all the string of a’s and b’s as i/p and
counts the no of a’s in the i/p string in terms of 1, ∑ = {a, b}, Δ = {0, 1}?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q construct a Moore machine take all the string of a’s and b’s as i/p and counts
the no of occurrence of sub-string ‘ab’ in terms of 1, ∑ = {a, b}, Δ = {0, 1}?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q construct a Moore machine where ∑ = {0, 1}, Δ = {a, b, c}, machine should give
o/p a, if the i/p string ends with 10, b if i/p string ends with 11, c otherwise?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Mealy Machine

• Mealy machine is a six-tuple (Q, ∑, Δ, δ, λ, q0), where all the symbols except λ
have the same meaning as in the Moore machine. λ is the output function
mapping Q x ∑ into Δ.

• In case of mealy machine, the output symbol depends on the transition.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Example: The below table shows the transition table of a Mealy Machine.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• If the length of i/p string is n, then length of o/p string will be n

• Mealy machine do not response for empty string Î

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q construct a Mealy machine take all the string of a’s and b’s as i/p and
counts the no of a’s in the i/p string in terms of 1, ∑ = {a, b}, Δ = {0, 1}?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q construct a Mealy machine take all the string of a’s and b’s as i/p and counts
the no of occurrence of sub-string ‘ab’ in terms of 1, ∑ = {a, b}, Δ = {0, 1}?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q construct a Mealy machine where ∑ = {0, 1}, Δ = {a, b, c}, machine should give
o/p a, if the i/p string ends with 10, b if i/p string ends with 11, c otherwise?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

CONVERSION OF MOORE TO MEALY MACHINE
• Let us take an example to understand the conversion:
• Convert the following Moore machine into its equivalent Mealy

machine.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• To convert a mealy machine to moore machine all you need to do is just push out
the outputs of states onto to the incoming transitions.

• While conversion from moore to mealy machine, the number of states will we
same and there will be no extra states.

• The equivalent Moore Machine will be:

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

PROCEDURE FOR TRANSFORMING A MEALY MACHINE INTO A MOORE MACHINE
Consider the Mealy Machine:

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Aspect Moore Machine Mealy Machine

Response to Null
Input

Produces an output
corresponding to the initial
state.

Does not produce any output.

Output Length for
Input of Length n

Generates an output string of
length n+1.

Generates an output string of
length n.

Initial Output
The initial output is
determined by the initial
state.

No initial output until an input
is provided.

Output
Synchronization

with Input

Output is one step behind
the input.

Output is synchronized with the
input; changes immediately
with input.

Typical Use Cases
Suitable for applications
where stable output is
necessary.

Ideal for applications requiring
immediate response to input
changes.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

MINIMIZATION OF FINITE AUTOMATA

• The process of elimination of states whose presence or absence doesn’t affect the
language accepting capability of deterministic Finite Automata is called minimization of
automata and the result is minimal deterministic finite automata or commonly called
as minimal finite automata as MFA.

• NOTE- MFA is always unique for a language.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• It is sometimes difficult to design a minimal DFA directly so, a better approach is to first
design the DFA and then minimize it.

• Based on productivity, the states of DFA can be mainly classified in two types-

• PRODUCTIVE STATES- State is said to be productive, if it adds any accepting power to
the machine that is its presence and absence effect the language accepting capability
of the machine.

• NON- PRODUCTIVE STATES- These states don’t any add anything to the language
accepting power to the machine.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

NON- PRODUCTIVE STATES- These states don’t add anything to the language
accepting power to the machine. They can further be divided into three types-

• Dead State

• Unreachable Sate

• Equal State

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Dead State- It is basically created to make the system complete, can be defined as a
state from which there is no transition possible to the final state.

• In a DFA there can be more than one dead state but logically always one dead state is
sufficient to complete the functionality.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Unreachable Sate- It is that state which cannot be reached starting
from initial state by parsing any input string.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Equal State-These are those states that behave in same manner on each and
every input string. That is for any string w where w Î S* either both of the states
will go to final state or both will go to non-final state. (remember the example of
an equal state DFA).

• More formally, two states ql and q2 are equivalent (denoted by q1≅ q2) if both δ
(q1, x) and δ (q2, x) are final states or both of them are non-final states for all x ∈
∑*. If q1 and q2 are k-equivalent for all k ≥ 0, then they are k-equivalent.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Procedure of Minimization
• For this first of all, group all the non-final states in one set and all final states in another

set.
• Now, on both the sets, individually check, whether any of the underlying elements (states)

of that particular set are behaving in the same way, that is are they having same
transition(to same set) on each input alphabet.

• if the answer is yes, then these two states are equal, otherwise not.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Chapter-2 (Regular Expressions and Languages):
Regular Expressions, Transition Graph, Kleen’s
Theorem, Finite Automata and Regular Expression-
Arden’s theorem, Algebraic Method Using Arden’s
Theorem, Regular and Non-Regular Languages-
Closure properties of Regular Languages,
Pigeonhole Principle, Pumping Lemma, Application
of Pumping Lemma, Decidability- Decision
properties, Finite Automata and Regular Languages

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Regular Expressions
• One way of describing regular language is via the notation of regular expression. An

expression of strings which represents regular language is called regular expression. The
regular expressions are useful for representing certain sets of strings(Language) in an algebraic
fashion.

• We give a formal recursive definition of regular expressions over ∑ as follows:

• Any terminal symbol (i.e. an element of ∑), ∈ and Φ are regular expressions (Primitive
regular expressions).

• A regular expression is valid iff it can be derived from a primitive regular expression by a
finite number of applications of operators.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Regular Language:- Any set(language) represented by a regular
expression is called a Regular language. If for example, a, b ∈ ∑, then
• R = a denotes the L = {a}

• R = a.b denotes L = {ab} concatenation

• R = a + b denotes L = {a, b} Union

• R = a* denotes the set {∈, a, aa, aaa, ...} known as Kleene closure.

• R = a+ Positive closure {a, aa, aaa…}

• R =(a + b)* denotes {a, b}*

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Operators
• When we view a in ∑ as a regular expression, we denote it by a.

• If R is a regular expression, then (R) is also a regular expression.
• The iteration (or closure) of a regular expression R written as R*, is also a

regular expression.
• The iteration (or closure) of a regular expression R written as R+, is also a

regular expression.
• The concatenation of two regular expressions R1 and R2, written as R1 R2, is

also a regular expression.
• The union of two regular expressions R1 and R2, written as R1 + R2, is also a

regular expression.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Operator Precedence

• The precedence order to solve is
• ()Bracket

• * (Kleene Closure)

• + Positive Closure

• Concatenation

• Union

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

IDENTITIES FOR Regular Expression

• Two regular expressions P and Q are equivalent (we write P = Q)
• if P and Q represent the same set of strings.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Every regular expression can generate only one regular language but, a regular
language can be generated by more than one regular expression I.e. means two
different regular expression can generate same language.

• Two regular expression are said to be equal if they generate same language.

• r1 = a*

• r2 = a* + (aa)*

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

1. R={a}

2. R={a + b}

3. R={a + b + c}

हमार% language बताओ

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

1. R={a.b}

2. R={a.b + a}b

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a regular expression that represent a language ‘L’, where L={a}
over the alphabet ∑={a}.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q design a regular expression that represent all strings over the alphabet
∑ = {a, b}, where every accepted string ‘w’ starts with substring s = ‘abb’

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q design a regular expression that represent all strings over the alphabet
∑ = {a, b}. where every accepted string ‘w’ ends with substring s = ‘bab’?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a regular expression that represent all strings over the
alphabet ∑ = {a, b}. where every accepted string ‘w’ contains sub string s
= ‘aba’ ?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a regular expression that represent all strings over the
alphabet ∑ = {a, b} such that every accepted string start and end with a.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a regular expression that represent all strings over the
alphabet ∑ = {a, b} such that every accepted string start and end with
same symbol?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a regular expression that represent all strings over the
alphabet ∑ = {a, b} such that every accepted string start and end with
different symbol ?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a regular expression that represent all strings over the
alphabet ∑ = {a, b} such that every accepted string w, is like w=SX S =
‘aaa/bbb’ ?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a regular expression that represent all strings over the
alphabet ∑ = {a, b} such that every accepted string w, is like w=XS. S =
‘aaa/bbb’ ?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a regular expression that represent all strings over the
alphabet ∑ = {a, b} such that every accepted string w, is like w=XSX. S =
aaa/bbb ?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a regular expression that represent all strings over the
alphabet ∑ = {a, b}, such that every string ‘w’ accepted must be like
i) |w| = 3 ii) |w|<=3 iii) |w|>=3

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a regular expression that represent all strings over the
alphabet ∑ = {a, b} such that for every accepted string 2nd from left end is
always b.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a regular expression that represent all strings over the
alphabet ∑ = {a, b} such that for every accepted string 4th from right end
is always a.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a regular expression that represent all strings over the
alphabet ∑= {a, b}, such that every string ‘w’ where |W| = 0(mod 3)?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a regular expression that represent all strings over the
alphabet ∑= {a, b}, such that every string ‘w’ where |W| = 3(mod 4)?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a regular expression that represent all strings over the
alphabet ∑= {a, b}, such that every string ‘w’ where |W|a = 0(mod 3)?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a regular expression that represent all strings over the
alphabet ∑= {a, b}, such that every string ‘w’ where |W|b = 2(mod 3)?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Algebraic Properties of regular expression

• Closure Property - Regular expressions satisfy closure property with respect to
Union, Concatenation and kleene closure. If R1 and R2 are regular expression
then the following will also be regular expression.

r1 + r2

r1.r2

r1*

r1
+

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Associative Property- Regular expression satisfy associative property with
respect to union and intersection

(r1 + r2) + r3 r1 + (r2 + r3)

(r1. r2). r3 r1. (r2. r3)

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Identity Property- The identity property is satisfied as follows-

r. = r

r+ = r

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Commutative Property- Regular expressions are commutative with
respect to union but not with respect to concatenation.

r1+ r2 r2+ r1

r1. r2 r2. r1

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Distributive Property-Regular expression satisfy this property as follows-

r1(r2+r3) r1r2+r1r3

(r1+r2) r3 r1r3+r2r3

r1+(r2. r3) (r1+r2)(r1+r3)

(r1.r2) + r3 (r1 +r3). (r2 + r3)

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Idempotent Property-regular expressions satisfies idempotent
property with respect to union but not with respect to concatenation.

r1+r1 r1

 r1. r1 r1

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Conversion from Finite Automata to regular expression

Q Write regular expressions for the following machines

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Conversion from regular expression in Finite Automata
i) R*

ii) (R1.R2)*

iii) (R1+R2)*

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

iv) (R1*R2.R3*)

v) R = a*b(ab)*

vi) R = (a + ba)*ab*

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

vii) R = (aa + aaa)*

viii) R = (a + aaaaa)*

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

1. 0 * 10 * 10 *

2. ((ab)* + c*)*

3. (∈ + a + aa + aaa)b* + (a + b)* ba(a + b)*

4. 0*(10 * 1*)*0*

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

1. a*b(b * + aa*b)*

2. ((11*0+0)(0 + 1)*0*1*)

3. (ab+ bc+ acc).(a+ bc)*.(∈+ bc*a)*

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

EQUIVALENCE BETWEEN Regular Expression AND FINITE AUTOMATA

• ARDEN’S THEOREM is the mechanism for the construction of a regular
expression from a finite automaton.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Consider a DFA and convert it into regular expression using Arden’s theorem?
d(A, a) = A
d(A, b) = B
d(B, a) = B
d(B, b) = B
A is the initial state and B Is the final state

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Steps used-
• For, every individual state of the DFA, write an expression for every incoming

and outgoing input alphabet.
• Apply Arden’s theorem as follows-

• If P is free from NULL, then equation R=Q+RP has unique solution, R=QP*
• If P contains NULL, then equation R=Q+RP has infinitely many solutions.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Consider a DFA and convert it into regular expression using Arden’s theorem?
d(A, b) = A
d(A, b) = B
d(B, a) = C
d(C, b) = C
A is the initial state and B,C Is the final state

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Transition Graph
• Same as Î-nfa Can have more than one initial state .
• Non-Deterministic in nature (so no dead state is required, can take

multiple moves).
• Can have string as a input to transition from one state to another.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Kleene’s Theorem
• The theorem has two main parts:

• For any given regular expression, there is an equivalent finite automaton
(either deterministic or non-deterministic) that recognizes the same
language.

• For any finite automaton, there is an equivalent regular expression that
generates the same language.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Closure Properties of Regular Languages

• Regular languages are closed under following operations

• Kleen Closure

• Positive closure

• Complement

• Reverse Operator

• Prefix Operator

• Suffix operator

• Concatenation

• Union

• Intersection

• Set Difference operator

• Symmetric Difference

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

RL DCFL CFL CSL RS RES
Union Y N Y Y Y Y

Intersection Y N N Y Y Y
Complement Y Y N Y Y N

Set Difference Y N N Y Y N
Kleene Closure Y N Y Y Y Y
Positive Closure Y N Y Y Y Y
Concatenation Y N Y Y Y Y

Intersection
with regular set Y Y Y Y Y Y

Reverse Y Y Y Y Y Y
Subset N N N N N N

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

RL DCFL CFL CSL RS RES

Homomorphism Y N Y N N Y
∈ Free Homomorphism Y N Y Y Y Y
Inverse Homomorphism Y Y Y Y Y Y

Substitution Y N Y N N Y
∈ Free Substitution Y N Y Y Y Y

Quotient with regular set Y Y Y N Y Y

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Pigeonhole Principle

• The Pigeonhole Principle is a fundamental principle of combinatorial
mathematics that states:

• If n items are put into m containers, with n>m, then at least one container must
contain more than one item.

• This principle seems intuitive, but it has powerful implications and can be used
to prove a variety of seemingly unrelated results across mathematics and
computer science.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Pumping Lemma For Regular Languages

• Pumping Lemma is used as a proof for irregularity of a language. Thus, if a language is regular,

it always satisfies pumping lemma. If there exists at least one string made from pumping

which is not in L, then L is surely not regular.

• The opposite of this may not always be true. That is, if Pumping Lemma holds, it does not

mean that the language is regular.

• Pumping Lemma is used to prove that some of the language is non-regular.

• For the pumping lemma, i/p is NRL & o/p is also NRL.

Pumping Lemma

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Pumping Lemma For Regular Languages
• For any regular language L, there exists an integer n, such that for all z ∈ L with |z| ≥ n, there

exists u, v, w ∈ Σ∗, such that z = uvw, and
o |uv| ≤ n
o |v| ≥ 1
o for all i ≥ 0: uviw ∈ L

• In simple terms, this means that if a string v is ‘pumped’, i.e., if v is inserted any number of
times, the resultant string still remains in L.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Process of pumping Lemma
• Suppose that we need to prove that language L is a non-regular.
• Assume that L is a regular language, then L must satisfy pumping lemma property.
• Choose z ∈ L such that |z| <= n, split z into 3 parts.

o |uv| ≤ n
o |v| ≥ 1

o If there exist at least one variable for i such that uviw ∉ L, then L does not satisfy pumping
lemma property so it is a contradiction, therefore language L is non-regular.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Proof that language L = {ambn | m=n} is non-regular?

L = {ab, aabb, aaabbb, aaaabbbb, ---}
z ∈ L
Z = akbk

For i=1 à uviw à akbk

For i=2 à uviw à ak+1bk ∉ L

There for L is not regular

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Proof that language L = {ambn | m<n} is non-regular?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Proof that language L = {anbn | n is a prime number} is non-regular?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Proof that language L = {an^2 | n>= 0} is non-regular?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

PROBLEM

SOLVABLE

DECIDABLE

P TYPE NP TYPE

UNDECIDABLE

UNSOLVABLE

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• SOLVABLE - A problem is said to be solvable if either we can solve it or
if we can prove that the problem cannot be solved

• UNSOLVABLE - A problem is said to be unsolvable if neither we can
solve it, nor we can proof that the problem can not be solved

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• P- if there exist a polynomial time algorithm to solve a problem then
problem is said to be decidable.

• NP- if there exist a non- polynomial time algo to solve a problem.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Decision properties

• Approximately all the properties are decidable in case a finite automaton. Here
we will use machine model to proof decision properties.

i) Emptiness

ii) Non-emptiness

iii) Finiteness

iv) Infiniteness

v) Membership

vi) Equality

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Emptiness & Non-emptiness
• Step 1: - select the state that cannot be reached from the initial states & delete them (remove

unreachable states)

• Step 2: - if the resulting machine contains at least one final states, so then the finite automata
accepts the non-empty language.

• Step 3: - if the resulting machine is free from final state, then finite automata accepts empty
language.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Finiteness & Infiniteness
• Step 1: - Select the state that cannot be reached from the initial state & delete them (remove

unreachable states)

• Step 2: - Select the state from which we cannot reach the final state & delete them (remove
dead states)

• Step 3: - If the resulting machine contains loops or cycles then the finite automata accepts
infinite language

• Step 4: - If the resulting machine do not contain loops or cycles then the finite automata
accepts finite language.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Membership
• Membership is a property to verify an arbitrary string is accepted by a finite automaton or not

i.e. it is a member of the language or not.

• Let M is a finite automata that accepts some strings over an alphabet, and let ‘w’ be any string
defined over the alphabet, if there exist a transition path in M, which starts at initial state &
ends in anyone of the final state, then string ‘w’ is a member of M, otherwise ‘w’ is not a
member of M.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Equality
• Two finite state automata M1 & M2 is said to be equal if and only if, they accept

the same language.

• Minimise the finite state automata and and the minimal DFA will be unique.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

RL DCFL CFL CSL RS RES
Emptiness Y Y Y X N N

Non-Emptiness Y Y Y X N N
Finiteness Y Y Y X N N

Infiniteness Y Y Y X N N
Membership Y Y Y X Y N

Equality Y N N X N N
Ambiguity Y N N X N N

∑* Y N N X N N
Halting Y Y Y X Y N

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Chapter-3 (Regular and Non-Regular Grammars):
Context Free Grammar(CFG)-Definition,
Derivations, Languages, Derivation Trees and
Ambiguity, Regular Grammars-Right Linear and Left
Linear grammars, Conversion of FA into CFG and
Regular grammar into FA, Simplification of CFG,
Normal Forms- Chomsky Normal Form(CNF),
Greibach Normal Form (GNF), Chomsky Hierarchy,
Programming problems based on the properties of
CFGs.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Introduction

• Language usually contains infinite number of strings.

• We cannot tabulate each and every string to represent the language, therefore
like automata, grammar is also a mathematical model of representing a
language, using which we can generate the entire language.

• Therefore, a grammar is usually thought of as a language generator.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Formal Grammar

A phrase-structure grammar (or simply a grammar) is a 4-tuple (VN, ∑, P, S), where
• VN is a finite nonempty set whose elements are called variables,

• ∑ is a finite nonempty set whose elements are called terminals, VN ⋂ ∑= Ф.

• S is a special variable (i.e., an element of VN (S Î Vn)) called the start symbol. Like every
automaton has exactly one initial state, similarly every grammar has exactly one start symbol.

• P is a finite set whose elements are α → β. where α and β are strings on VN ⋃ ∑. α has at least
one symbol from VN, the element of P are called productions or production rules or rewriting
rules. {Σ U Vn}* some writer refers it as total alphabet

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

For a formal valid production

 α à β

 α Î {Σ U Vn}* Vn {Σ U Vn}*

 β Î {Σ U Vn}*

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Some points to note about productions

• Reverse substitution is not permitted. For example, if S → AB is a production,
then we can replace S by AB but we cannot replace AB by S.

• No inversion operation is permitted. For example, if S → AB is a production, it is
not necessary that AB →S is a production.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Defining a language by grammar

• The concept of defining a language using grammar is, starting from a start symbol using the
production rules of the grammar any time, deriving the string. Here every time during
derivation a production is used as its LHS is replaced by its RHS, all the intermediate
stages(strings) are called sentential forms. The language formed by the grammar consists of all
distinct strings that can be generated in this manner.

 L (G) = {w | w Î ∑* , S à* W}

• à*(reflexive, transitive closure) means from s we can derive w in zero or more steps

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Using same idea, we do processing of natural languages in computers, Actively
used in compliers

• L (G) is the set of all terminal strings derived from the start symbol S.

• G1 and G2 are equivalent if L (G1) = L (G2).

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Chomsky Classification of Languages

• Chomsky classified the grammars into four types in terms of productions (types 0-3).

• This hierarchy of grammars was described by Noam Chomsky in 1956. From type 0 to type 3,
we will be putting more and more restrictions.

• We will see that more restrictive is grammar easy will be the language and more liberal is the
grammar difficult will be the language. Based on the production rules of the grammar, we can
classify the formal grammar into four types, based on which we generate different languages.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Avram Noam Chomsky (born December 7, 1928) is an American linguist, philosopher, cognitive
scientist, historian, social critic, and political activist. Sometimes called "the father of modern linguistics",

• Chomsky is also a major figure in analytic philosophy and one of the founders of the field of cognitive science. He
is Laureate Professor of Linguistics at the University of Arizona and Institute Professor Emeritus at
the Massachusetts Institute of Technology (MIT), and is the author of more than 150 books on topics such as
linguistics, war, politics, and mass media. Ideologically, he aligns with anarcho-syndicalism and libertarian
socialism.

• Born to Jewish immigrants in Philadelphia, Chomsky developed an early interest in anarchism from alternative
bookstores in New York City. He studied at the University of Pennsylvania. During his postgraduate work in
the Harvard Society of Fellows, Chomsky developed the theory of transformational grammar for which he earned
his doctorate in 1955. That year he began teaching at MIT, and in 1957 emerged as a significant figure in
linguistics with his landmark work Syntactic Structures, which played a major role in remodeling the study of
language.

• From 1958 to 1959 Chomsky was a National Science Foundation fellow at the Institute for Advanced Study. He
created or co-created the universal grammar theory, the generative grammar theory, the Chomsky hierarchy, and
the minimalist program. Chomsky also played a pivotal role in the decline of linguistic behaviorism, and was
particularly critical of the work of B. F. Skinner.

http://www.knowledgegate.in/gate
https://en.wikipedia.org/wiki/Linguist
https://en.wikipedia.org/wiki/Philosopher
https://en.wikipedia.org/wiki/Cognitive_scientist
https://en.wikipedia.org/wiki/Cognitive_scientist
https://en.wikipedia.org/wiki/Historian
https://en.wikipedia.org/wiki/Social_critic
https://en.wikipedia.org/wiki/Political_activist
https://en.wikipedia.org/wiki/Analytic_philosophy
https://en.wikipedia.org/wiki/University_of_Arizona
https://en.wikipedia.org/wiki/Institute_Professor
https://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
https://en.wikipedia.org/wiki/Mass_media
https://en.wikipedia.org/wiki/Anarcho-syndicalism
https://en.wikipedia.org/wiki/Libertarian_socialism
https://en.wikipedia.org/wiki/Libertarian_socialism
https://en.wikipedia.org/wiki/Jewish
https://en.wikipedia.org/wiki/Philadelphia
https://en.wikipedia.org/wiki/Anarchism
https://en.wikipedia.org/wiki/University_of_Pennsylvania
https://en.wikipedia.org/wiki/Harvard_Society_of_Fellows
https://en.wikipedia.org/wiki/Transformational_grammar
https://en.wikipedia.org/wiki/Syntactic_Structures
https://en.wikipedia.org/wiki/National_Science_Foundation
https://en.wikipedia.org/wiki/Institute_for_Advanced_Study
https://en.wikipedia.org/wiki/Universal_Grammar
https://en.wikipedia.org/wiki/Generative_grammar
https://en.wikipedia.org/wiki/Chomsky_hierarchy
https://en.wikipedia.org/wiki/Minimalist_program
https://en.wikipedia.org/wiki/Behaviorism
https://en.wikipedia.org/wiki/B._F._Skinner

http://www.knowledgegate.in/gate

• An outspoken opponent of U.S. involvement in the Vietnam War, which he saw as an act of American
imperialism, in 1967 Chomsky rose to national attention for his anti-war essay "The Responsibility of
Intellectuals".

• Associated with the New Left, he was arrested multiple times for his activism and placed on
President Richard Nixon's Enemies List. While expanding his work in linguistics over subsequent
decades, he also became involved in the linguistics wars. In collaboration with Edward S. Herman,
Chomsky later articulated the propaganda model of media criticism in Manufacturing Consent and
worked to expose the Indonesian occupation of East Timor.

• His defense of freedom of speech, including Holocaust denial, generated significant controversy in
the Faurisson affair of the 1980s. Since retiring from MIT, he has continued his vocal political activism,
including opposing the 2003 invasion of Iraq and supporting the Occupy movement. Chomsky began
teaching at the University of Arizona in 2017.

• One of the most cited scholars alive, Chomsky has influenced a broad array of academic fields. He is
widely recognized as having helped to spark the cognitive revolution in the human sciences, contributing
to the development of a new cognitivistic framework for the study of language and the mind.

• In addition to his continued scholarship, he remains a leading critic of U.S. foreign
policy, neoliberalism and contemporary state capitalism, the Israeli–Palestinian conflict, and
mainstream news media. Chomsky and his ideas are highly influential in the anti-capitalist and anti-
imperialist movements.

http://www.knowledgegate.in/gate
https://en.wikipedia.org/wiki/Opposition_to_United_States_involvement_in_the_Vietnam_War
https://en.wikipedia.org/wiki/Role_of_the_United_States_in_the_Vietnam_War
https://en.wikipedia.org/wiki/American_imperialism
https://en.wikipedia.org/wiki/American_imperialism
https://en.wikipedia.org/wiki/Anti-war_movement
https://en.wikipedia.org/wiki/The_Responsibility_of_Intellectuals
https://en.wikipedia.org/wiki/The_Responsibility_of_Intellectuals
https://en.wikipedia.org/wiki/New_Left
https://en.wikipedia.org/wiki/Richard_Nixon
https://en.wikipedia.org/wiki/Master_list_of_Nixon%27s_political_opponents
https://en.wikipedia.org/wiki/Linguistics_wars
https://en.wikipedia.org/wiki/Edward_S._Herman
https://en.wikipedia.org/wiki/Propaganda_model
https://en.wikipedia.org/wiki/Media_criticism
https://en.wikipedia.org/wiki/Manufacturing_Consent
https://en.wikipedia.org/wiki/Indonesian_occupation_of_East_Timor
https://en.wikipedia.org/wiki/Holocaust_denial
https://en.wikipedia.org/wiki/Faurisson_affair
https://en.wikipedia.org/wiki/2003_invasion_of_Iraq
https://en.wikipedia.org/wiki/Occupy_movement
https://en.wikipedia.org/wiki/Cognitive_revolution
https://en.wikipedia.org/wiki/Human_sciences
https://en.wikipedia.org/wiki/Cognitivism_(psychology)
https://en.wikipedia.org/wiki/Criticism_of_United_States_foreign_policy
https://en.wikipedia.org/wiki/U.S._foreign_policy
https://en.wikipedia.org/wiki/U.S._foreign_policy
https://en.wikipedia.org/wiki/Neoliberalism
https://en.wikipedia.org/wiki/State_capitalism
https://en.wikipedia.org/wiki/Israeli%E2%80%93Palestinian_conflict
https://en.wikipedia.org/wiki/News_media
https://en.wikipedia.org/wiki/Anti-capitalist
https://en.wikipedia.org/wiki/Anti-imperialist
https://en.wikipedia.org/wiki/Anti-imperialist

http://www.knowledgegate.in/gate

LANGUAGES AND AUTOMATA

• Following are the machines that accepts the following grammars.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Type 0 Grammar

• Also known as Unrestricted Grammar, phase structured grammar, recursively enumerable
grammar used to generate recursive enumerable language which is accepted by a Turing
machine.

• A type 0 grammar is without any restrictions.

• No restriction on the production rule, that is if there is a production from

 α à β
 α Î {Σ U Vn}* Vn {Σ U Vn}*

 β Î {Σ U Vn}*

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Type 1 Grammar
• Also known as case sensitive Grammar, length increasing grammar, non-contracting grammar,

used to generate context sensitive language which is accepted by a linear bounded
automaton.

 α A β à α δ β
 α , β Î {Σ U Vn}* A Î Vn δ Î {Σ U Vn}+

 or

 α à β
 α Î {Σ U Vn}* Vn {Σ U Vn}*

 β Î {Σ U Vn}+

 |α| <= |β|

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• As from the rule we can understand that we cannot have null production, in order to solve that
problem, Production SàÎ, is allowed if S do not appear on the right-hand side of the
production.

• A grammar is called type 1 or context-sensitive or context dependent if all its productions are
type 1 productions.

• Very difficult to have a parse tree

• FORTRAN, PL1 with CGF we use STD

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Type 2 Grammar
• Also known as Context Free Grammar, which will generate context free language that will be

accepted by push down automata. (NPDA default case)

• if there is a production, from
 α à β
 α Î Vn |α| = 1
 β Î {Σ U Vn} *

• In other words, the L.H.S. has no left context or right context.

• A grammar is called a type 2 grammar if it contains only type 2 productions.

• Eg ALGOL 60, PASCAL

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Type 3 Grammar

• Used to generate Regular Grammar which will generate regular language which will be
accepted by finite machine.

• Regular grammar can be of two types either left linear or right linear.
• Left regular grammar, support two types of production
 A à a / Ba
 A, B Î Vn |A| = |B| = 1
 a Î ∑*

• Right regular grammar
 A à a / aB
 A, B Î Vn |A| = |B| = 1
 a Î ∑*

• however, if left-linear rules and right-linear rules are combined, the language need no longer
be regular.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Consider the following grammar and identify it’s language?
S à aAb

A à aB / b

B à c

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Consider the following grammar and identify it’s language?
S à AB / Bb

A à b / c

B à d

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Consider the following grammar and identify it’s language?
S à aSb / Î

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Consider the following grammar and identify it’s language?
S à aA / abS

A à bS / b

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Consider the following grammar and identify it’s language?
S à aAB

A à aA / Î

B à b

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Consider the following grammar and identify it’s language?
S à AB

A à aA / Î

B à bB / b

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Consider the following grammar and identify it’s language?
S à aSa / bSb / Î

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a grammar that generates all strings over the alphabet ∑ = {a,
b}, where every accepted string ‘w’ starts with substring s = abb

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a grammar that generates all strings over the alphabet ∑ = {a, b}.
where every accepted string ‘w’ ends with substring s = bab

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a grammar that generates all strings over the alphabet ∑ = {a,
b}. where every accepted string ‘w’ contains sub string s = aba

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a grammar that generates all strings over the alphabet ∑ = {a,
b} such that every accepted string start and end with a.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a grammar that generates all strings over the alphabet ∑ = {a, b}, such
that every string ‘w’ accepted must be like
i) |w| = 3 ii) |w|<=3 iii) |w|>=3

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a grammar that generates all strings over the alphabet ∑= {a,
b}, such that every string ‘w’ where |W| = 0(mod 3)?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a grammar that generates all strings over the alphabet ∑= {a,
b}, such that every string ‘w’ where |W| = 3(mod 4)?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Regular Grammar
to

Regular Expression

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à 01S / 01

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à 0011S / 01 / 10

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à 01A / B11
A à011A / 01
B à 101B / 11

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à 011A / 101B
A à110A / 00
B à 11B / S

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Regular Grammar
to

(Finite Automata)

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à 01S / 1

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à 011S / 01

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à 001S / 10A
A à 101A / 0 / 1

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Derivation: - The process of deriving a string is known as derivation.

• Derivation/ Syntax/ Parse Tree: - The graphical representation of
derivation is known as derivation tree.

E à E + E / E * E / E = E / id

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Sentential form: - Intermediate step involve in the derivation is known
as sentential form.

Sentential Form

E
E*E

E+E*E
ID+E*E
ID+ID*E
ID+ID*ID

E à E + E / E * E / E = E / id

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Left most derivation: - the process of construction of parse tree by expanding
the left most non terminal is known as LMD and the graphical representation of
LMD is known as LMDT (left most derivation tree)

LMD
E à E + E E
Eà E * E E*E
Eà E = E E+E*E

Eà id ID+E*E
Eà id ID+ID*E
Eà id ID+ID*ID

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Right most derivation: - the process of construction of parse tree by expanding
the right most non terminal is known as RMD and the graphical representation
of RMD is known as RMDT (right most derivation tree)

RMD
E à E + E E
Eà E * E E+E
Eà E = E E+E*E

Eà id E+E*ID
Eà id E+ID*ID
Eà id ID+ID*ID

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Ambiguous grammar: - The grammar CFG is said to be ambiguous if
there are more than one derivation tree for any string i.e. if there exist
more than one derivation tree (LMDT or RMDT), the grammar is said to
be ambiguous.
S à aS/Sa/a

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Unambiguous grammar: - The CFG is said to be unambiguous if there
exist only one parse tree for every string i.e. if there exist only one LMDT
or RMDT, then the grammar is unambiguous e.g.

S à aSb/ab

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Some CFL are called inherently ambiguous means there exist no unambiguous
CFG to generate the corresponding CFL, proved by Rohit Parikh 1961,

• {an bm cm dn } U {an bn cm dm }

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Grammar which is both left and right recursive is always ambiguous,
but the ambiguous grammar need not be both left and right recursive.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Simplification or Minimization of CFG

• The reason we simplify CFG to make it more efficient and compiler friendly.
• The process of deleting and eliminating of useless symbols, unit production and

null production is known as simplification of CFG.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Removal of Null or Empty productions

• The production of the form A à Î is known as null production of empty
production, here we try to remove them by replacing equivalent derivation.

S à AbB
A à a / Î
B à b / Î

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à AB
A à a / Î
B à b / Î

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à aSb / Î

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Removal of unit productions

• The production of the form A à B where A, B Î Vn, |A| = |B| = 1, is known as
unit production.

S à Aa
A à a / B
B à d

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à aAb
A à B / a
B à C / b
C à D / c
D à d

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à aSb / Î

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Removal of useless symbols

• The variables which are not involved in the derivation of any string is known as
useless symbol.

• Select variable that are
reachable from the start
symbol but which does
not derive any terminal,
remove them along with
their productions

• Select the Variable that
cannot be reached from
the start symbol of the
grammar and remove them
along with their all
production.

S à aAB
A à a
B à b
C à d

S à aA / aB
A à b

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à aAB / bA / aC
A à aB / b
B à aC / d

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Chomsky Normal Form
• The Grammar G is said to be in Chomsky Normal Form, if every

production is in the form

A à BC / a

B, C Î Vn
a Î S

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Avram Noam Chomsky (born December 7, 1928) is an American linguist,
philosopher, cognitive scientist, historian, social critic, and political activist. Sometimes
called "the father of modern linguistics",

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à aSb / ab

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à aAb / bB
A à a / b
B à b

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• if CFG is in CNF, then for a derivation of string w, with length we need
exactly 2n -1 production. |w| = n, number of sentential forms will be
2n -1

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Greiback Normal Form
• The Grammar G is said to be in Greiback Normal Form, if every

production is in the form

 A à aα

 A Î Vn

 a Î S
 α Î Vn*

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Sheila Adele Greibach (born 6 October
1939 in New York City) is a researcher in
formal languages in computing, automata,
compiler theory and computer science.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à aSb / ab

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

S à aAb / bB
A à a / b
B à b

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• if CFG is in GNF, then for a derivation of string w, with length we need
exactly n production. |w| = n, number of sentential forms will be n

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Chapter-4 (Push Down Automata and Properties of
Context Free Languages): Nondeterministic Pushdown
Automata (NPDA)- Definition, Moves, A Language
Accepted by NPDA, Deterministic Pushdown
Automata(DPDA) and Deterministic Context free
Languages(DCFL), Pushdown Automata for Context Free
Languages, Context Free grammars for Pushdown
Automata, Two stack Pushdown Automata, Pumping
Lemma for CFL, Closure properties of CFL, Decision
Problems of CFL, Programming problems based on the
properties of CFLs.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

CONTEXT-FREE LANGUAGES AND PUSH DOWN AUTOMATA

• Context-free languages are applied in parser design.

• They are also useful for describing block structures in programming languages.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Push Down Automata
• We Already understand the limitation of finite automata, that it cannot do the infinite comparison

between the symbols.

• Let us consider L = {an bn | n >= 1}. This is not regular, as it has to remember the number of a's in a
string and so it will require an infinite number of states, which is logically not possible.

• This difficulty can be avoided by adding an auxiliary memory in the form of a 'stack'. The reason we
choose stack because it is the simplest memory possible.

• This type of arrangement where a finite automaton has a stack leads to the generation of a
pushdown automaton.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

BLOCK DIAGRAM OF PDA
• Finite control unit is also called as memory unit it is static and limited. So to process the i/p

string if the static memory is not sufficient then we can use the stack.

• i/p tape is divided into cells where is cell is capable of holding one symbol at a time. At stack of
infinite size, which support three operations push, pop and skip.

• The accepting power of a pda is more than that of finite automata and less than that of linear
bounder automata

• The power of non-deterministic pda is more than the power of deterministic pda.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Formal Definition of DPDA

A DPDA is a 7-tuple, namely (Q, ∑, Γ, δ, q0, Z0, F), where

(i) Q – is a finite nonempty set of states,

(ii) ∑ – is a finite nonempty set of input symbols,

(iii) Γ – is a finite nonempty set of pushdown symbols,

(iv) q0 – is a special state called the initial state,

(v) Z0 – is a special pushdown symbol called the initial symbol on the pushdown store.

(vi) F – is a set of final states, a subset of Q and

(vii) δ – is a transition function from Q x (∑ U {∈}) x Γ to the set of finite subsets of Q x Γ*.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Representation of States
(1) PUSH – one symbol can be inserted into the stack at one time.
 δ(qi, a, z0) = (qj, az0)

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Representation of States
(2) POP – one symbol can be deleted from the stack at one time.
 δ(qi, a, z0) = (qj, ε)

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Representation of States

(3) SKIP – IT means no stack operation, status of the stack will remain same, before
a after the operation
 δ(qi, a, z0) = (qj, z0)

note- if pda perform a push or a pop operation at least one’s during processing of
string than we say that pda is using the stack.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Instantaneous Description (ID)

• An instantaneous description (ID) is (q, x, α), where q ∈ Q, x ∈ ∑* and α ∈ Γ*.

• An initial ID is (q0, x, Z0), this means that initially the pda is in the initial state q0, the input
string to be processed is x and the PDS has only one symbol, namely Z0.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

ACCEPTANCE BY PDA

• There is no change in the language acceptance capability of the pda either we
accept by final state of empty stack.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a Deterministic Push Down Automata for {an bn | n >= 1} ?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a Deterministic Push Down Automata for {an b2n | n >= 1} ?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a PDA for {w c wr | w ∈(a, b)*} ?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Construct PDA that accepts L = {|w|a = b | w € (a, b)*} ?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Non- Deterministic PDA

• Non- Deterministic PDA can also be defined using 7 tuples.

• δ: Q x {∑ U ∈} x Γ → 2(Q x Γ*)

• i.e. on a given input symbol and stack symbol a NPDA can move to more than one state.

• Rest all other tuples are same as DPDA.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Construct pda that accepts a language L = {w wr | w € (a, b)*}?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Decision properties
Following properties are decidable in case a CFL. Here we will use Grammar model
to proof decision properties.

i) Emptiness

ii) Non-emptiness

iii) Finiteness

iv) Infiniteness

v) Membership

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q consider the following CFG and identify which of the following CFG generate Empty language?

S à aAB / Aa
A à a

S à aAB
A à a / b

S à aAB / aB
A à aBb
B à aA

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q consider the following CFG and identify which of the following CFG generate Finite
language?

S à SS / AB
A à BC / a
B à CC / b

S à AB
A à B / a

S à AB
A à BC / a
B à CC / b
C à AB

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q consider the following CFG and check out the membership properties?

S à AB / BB
A à BA / AS / b
B à AA / SB / a

w1 = aba
w2 = abaab
w3 = abababba

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

CYK	algorithm

• In computer science, the Cocke–Younger–Kasami algorithm (alternatively called CYK, or CKY) is
a parsing algorithm for context-free grammars, named after its inventors, John Cocke, Daniel Younger
and Tadao Kasami. It employs bottom-up parsing and dynamic programming.

• The standard version of CYK operates only on context-free grammars given in Chomsky normal
form (CNF). However any context-free grammar may be transformed to a CNF grammar expressing the
same language (Sipser 1997).

• The importance of the CYK algorithm stems from its high efficiency in certain situations. Using Big O
notation, the worst case running time of CYK is O (n3 .|G|), Where n is the length of the parsed string
and |G| is the size of the CNF grammar G.

• This makes it one of the most efficient parsing algorithms in terms
of worst-case asymptotic complexity, although other algorithms exist
with better average running time in many practical scenarios.

http://www.knowledgegate.in/gate
https://en.wikipedia.org/wiki/Tadao_Kasami

http://www.knowledgegate.in/gate

Following properties are Undecidable in case a CFL
i) Equality

ii) Ambiguity

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

RL DCFL CFL CSL RS RES
Emptiness Y Y Y X N N

Non-Emptiness Y Y Y X N N
Finiteness Y Y Y X N N

Infiniteness Y Y Y X N N
Membership Y Y Y X Y N

Equality Y N N X N N
Ambiguity Y N N X N N

∑* Y N N X N N
Halting Y Y Y X Y N

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Closure Properties of Deterministic Context Free Languages
• Deterministic Context Free Languages are closed under following operations

• Complement
• Intersection with regular set
• Inverse Homeomorphism

• Deterministic Context Free Languages are not closed under following operations
• Union
• Concatenation
• Kleen closure
• homomorphism
• Substitution
• Reverse operator
• Intersection

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Closure Properties of Context Free Languages

• Context Free Languages are closed under following operations
• Union
• Concatenation
• Kleen Closure
• Substitution
• Homomorphism
• Inverse Homomorphism
• Reverse Operator
• Intersection with regular set

• Context Free Languages are not closed under following operations
• Intersection
• Complement
• Symmetric Difference

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

RL DCFL CFL CSL RS RES

Union Y N Y Y Y Y
Intersection Y N N Y Y Y
Complement Y Y N Y Y N
Set Difference Y N N Y Y N
Kleene Closure Y N Y Y Y Y
Positive Closure Y N Y Y Y Y
Concatenation Y N Y Y Y Y

Intersection with
regular set Y Y Y Y Y Y

Reverse Y Y Y Y Y Y
Subset N N N N N N

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

RL DCFL CFL CSL RS RES

Homomorphism Y N Y N N Y
∈ Free Homomorphism Y N Y Y Y Y
Inverse Homomorphism Y Y Y Y Y Y

Substitution Y N Y N N Y
∈ Free Substitution Y N Y Y Y Y

Quotient with regular set Y Y Y N Y Y

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Chapter-5 (Turing Machines and Recursive Function
Theory): Basic Turing Machine Model, Representation of
Turing Machines, Language Acceptability of Turing
Machines, Techniques for Turing Machine Construction,
Modifications of Turing Machine, Turing Machine as
Computer of Integer Functions, Universal Turing
machine, Linear Bounded Automata, Church’s Thesis,
Recursive and Recursively Enumerable language, Halting
Problem, Post’s Correspondance Problem, Introduction
to Recursive Function Theory.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Turing Machine
• The Church-Turing thesis states that any algorithmic procedure that can be carried out by human

beings/computer can be carried out by a Turing machine.

• It has been universally accepted by computer scientists that the Turing machine provides an ideal theoretical
model of a computer.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Turing machines are useful in several ways:

• As an automaton, the Turing machine is the most general model.

• It accepts type-0 languages.

• It can also be used for computing functions.

• Turing machines are also used for determining the undecidability of certain languages
and measuring the space and time complexity of problems.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Components of Turing Machine
Infinite Tape

• An input infinite tape can be, used as an input buffer and also as a member element.
• It is random accessible. It is of infinite length divided into cells and each cell is capable of

holding only one tape symbol.
• It is also called 2-way infinite tape.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Components of Turing Machine
Read-Write Buffer

• Read the data from the tape and can also write the data over the tape. After reading the
symbol from the tape, the read/write header moves to exactly one cell either in left or
right direction.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Components of Turing Machine
Finite Control Unit

• As per the control unit, the transitions will take place, and will finally lead to some output.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

FORMAL DEFINITION
A Turing machine M is a 7-tuple, namely (Q, ∑, Γ, δ, q0, b, F), where
• Q is a finite nonempty set of states.

• Γ is a finite nonempty set of tape symbols,

• b ∈ Γ is the blank.

• ∑ is a nonempty set of input symbols and is a subset of Γ and b ∉∑.

• δ is the transition function mapping d: Q ×ℾ -> Q× ℾ × (L/R). It says that, on providing a tape symbol, from a
particular state there will be a transition to another state, with a different or same tape symbol with defining
whether next the machine needs to move in left/ right.

• q0 ∈ Q is the initial state, and

• F ⊆ Q is the set of final states.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a Turing machine for L = {an bn | n >= 1}?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

REPRESENTATION OF TURING MACHINES

Three representations:

• Instantaneous descriptions using move-relations.

• Transition table, and

• Transition diagram (transition graph).

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

LANGUAGE ACCEPTABILITY BY TURING MACHINES

• A string w in ∑* is said to be accepted by a TM(M) if after parsing the string w Turing machine

must halts on final state.

• q0w ⊢* α1pα2 for some p ∊ F and α1, α2 ∊ Γ *.

• M does not accept w if the machine M either halts in a non-accepting state or does not halt

and goes into a loop.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a Turing machine for L = {an bn cn| n >= 0}?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a Turing machine for L = {w c w | w ∊ {0, 1}* }?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a Turing machine for addition of two number in unary?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Design a Turing machine for converting unary number into binary
number?

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Versions of Turing Machine

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• On the basis of determinism of the next transition to a state on a particular
input, Turing Machine are divided in two types-
• Determinism Turing Machine.
• Non-Deterministic Turing Machine.

• In non-deterministic Turing machine, there can be more than one possible move
for a given state and tape symbol, but non-deterministic TM does not add any
power.

• Every non-deterministic TM can be converted into deterministic TM.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Versions of Turing Machine

• There are multiple versions of Turing Machine which are as follows-

• Multi-tape Turing Machine.
• In multi-tape Turing machine, there can be more than one tape and corresponding head

pointers, but it does not add any power to Turing machine.
• Every multi-tape TM can be converted into single tape TM.
• Every language accepted by a multi-tape TM is acceptable by some single-tape TM (that is,

the standard TM).

• Multi Read/Write head points.

• Multi-dimensional Turing Machine.

• TM with stay option d: Q ×ℾ -> Q× ℾ × (L/R/S).

• TM with one way infinite tape (Semi infinite tape)

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Offline TM, this TM have a restriction that input can not be changed

• Jumping TM, where it is allowed to take more that one moves in one transaction d: Q ×ℾ -> Q×
ℾ × (L/R) ×{n}.

• Non erasing TM, (where input can not be converted to blank)

• Always writing TM, (after reading a symbol from tape it must be replaced with other symbol)

• Multidimensional TM d: Q ×ℾ -> Q× ℾ × (L/R/U/D)

• Multi-head TM

• FA with a Queue

• TM with only 3 states

• Multi-tape Turing Machine with stay option and at most 2 states.

• Non-Deterministic TM d: Q ×ℾ -> 2 Q× ℾ × (L/R)

• A NPDA with two independent stacks d: Q ×(S U Î) × ℾ × ℾ -> 2 Q× ℾ* × ℾ*

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Q Consider the Turing machine M defined below
Choose the false statement
a) The machine loops on 01

b) The machine does not accept 0000

c) The machine accepts strings ending with a 1

d) The machine accepts strings ending with 10

0 1 B

®Q0 (Q0, 0, R) (Q2, 1, L) (Qf, -, -)

Q1 (Q2, 1, L) (Q1, 1, R) (Qf, -, -)

Q2 (Q2, 1, L) (Q2, 0, L) (Qf, -, -)

*Qf --- --- ---

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Halt
• The state of Turing machine, where no transition is defined or required is known as Halt. There

are two types of Halt-
• Final Halt- Machine has been halted on final state, then it is known as Final halt and hence

it depicts that machine is accepted.
• Non-Final Halt-Machine has been halted on non- final state, then it is known as non- final

halt and hence the string is rejected.

• After taking an input string, there are three possibilities for Turing Machine
• It may go to Final halt.
• It may go to Non- Final halt.
• It may go into Infinite loop.

• Final Halt and Non- Final Halt have been described above. After taking an input string, if the
machine goes to infinite loop, then we can’t say whether the string is Accepted/Rejected.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• So, broadly Recursively Enumerable Languages are categorized as-
• Recursive Set- The Language L, which is accepted by Turing Machine, is said to be recursive

set, where for all, ‘w’ that belongs to L, machine will go to final halt, and for all ‘w’ that
does not belongs to L, machine will go to non-final halt. Hence, membership property is
defined here.

• Recursively Enumerable Set- The language L, which is accepted by Turing Machine is said
to be REL, where for all, ‘w’ that belongs to L, machine will go to final halt, and for all ‘w’
that does not belongs to L, machine will either go to non-final halt or infinite loop. Hence,
membership property is not defined here.

• If a set and its complement both are recognizable, then the set is decidable.
• There are some sets which are not recognizable (even members can’t be identified) because

there are more languages than programs.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Universal Turing Machine

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Universal Turing Machine

• In computer science, a universal Turing machine (UTM) is a Turing machine that
simulates an arbitrary Turing machine on arbitrary input.

• The universal machine essentially achieves this by reading both the description
of the machine to be simulated as well as the input to that machine from its own
tape.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Every Turing machine computes a certain fixed partial computable function from the input
strings over its alphabet. In that sense it behaves like a computer with a fixed program.

• However, we can encode the action table of any Turing machine in a string. Thus we can
construct a Turing machine that expects on its tape a string describing an action table followed
by a string describing the input tape, and computes the tape that the encoded Turing machine
would have computed. Turing described such a construction in complete detail in his 1936
paper:

• "It is possible to invent a single machine which can be used to compute any computable
sequence. If this machine U is supplied with a tape on the beginning of which is written the S.D
["standard description" of an action table] of some computing machine M, then U will
compute the same sequence as M.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Linear Bounded Automata

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

A Linear Bounded Automaton (LBA) is similar to Turing Machine with
property stated below:
•Turing Machine with a bounded finite length of the tape.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Turing-Church Thesis
• Concept Origin: Independently developed by Alan Turing and Alonzo Church in

the 1930s, establishing a fundamental principle in computer science about
computable functions.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

1.Turing Machines: Turing proposed the concept of a 'Turing machine', a
theoretical computing machine that can simulate any algorithm's logic.

2.Church's Lambda Calculus: Church introduced lambda calculus, a
formal system for expressing computation based on function abstraction
and application.

3.Equivalent Models: The thesis states that what can be computed on a
Turing machine can also be computed in Church's lambda calculus,
implying both models are equivalent in their computational power.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

The Post Correspondence Problem (PCP)
• is a significant problem in the field of theoretical computer science. It was introduced by Emil

Post in 1946 and is known for its undecidability. Here are the main points:

• Basic Concept: The problem involves two lists of words (strings of symbols) over a
common alphabet. The challenge is to find a sequence of indices where the concatenation
of the words in the first list, in that sequence, is equal to the concatenation of the words in
the second list in the same sequence.

• A = {1, 110, 0111}
• B = {111, 001, 11}

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

• Undecidability: The Post Correspondence Problem is known to be undecidable,
meaning there is no algorithm that can determine for every instance of the
problem whether or not a solution exists. This undecidability is a crucial aspect
in the theory of computation, particularly in understanding the limits of
algorithmic solvability.

• A = {b, babbb, ba}
• B = {bbb, ba, a}

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Decision properties

• Following properties are decidable in case a RS.
• Membership

• All properties are undecidable in case of a REL.

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

RL DCFL CFL CSL RS RES
Emptiness Y Y Y X N N

Non-
Emptiness Y Y Y X N N

Finiteness Y Y Y X N N

Infiniteness Y Y Y X N N

Membershi
p Y Y Y X Y N

Equality Y N N X N N

Ambiguity Y N N X N N

∑* Y N N X N N

Halting Y Y Y X Y N

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Closure Properties of Recursive Set
• Recursive languages are closed under following operations

• Union
• Concatenation
• Intersection
• Reverse
• Complement
• Inverse homomorphism
• Intersection with regular set
• Set Difference

• Recursive languages are not closed under following operations
• Kleen closure
• Homomorphism
• Substitution

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

Closure Properties of Recursive Enumerable Set
• Recursive Enumerable are closed under following operations

• Union
• Concatenation
• Kleen Closure
• Intersection
• Substitution
• Homomorphism
• Inverse Homomorphism
• Intersection with regular set
• Reverse operation

• Recursive Enumerable are not closed under following operations
• Compliment
• Set Difference

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

RL DCFL CFL CSL RS RES
Union Y N Y Y Y Y

Intersection Y N N Y Y Y

Complement Y Y N Y Y N

Set Difference Y N N Y Y N

Kleene Closure Y N Y Y Y Y

Positive Closure Y N Y Y Y Y

Concatenation Y N Y Y Y Y

Intersection with
regular set Y Y Y Y Y Y

Reverse Y Y Y Y Y Y

Subset N N N N N N

http://www.knowledgegate.in/gate

http://www.knowledgegate.in/gate

RL DCFL CFL CSL RS RES

Homomorphism Y N Y N N Y

∈ Free Homomorphism
Y N Y Y Y Y

Inverse Homomorphism Y Y Y Y Y Y

Substitution
Y N Y N N Y

∈ Free Substitution Y N Y Y Y Y

Quotient with regular set Y Y Y N Y Y

http://www.knowledgegate.in/gate

